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Abstract. Committed Oblivious Transfer (COT) is a useful crypto-
graphic primitive that combines the functionalities of bit commitment
and oblivious transfer. In this paper, we introduce an extended version of
COT (ECOT) which additionally allows proofs of relations among com-
mitted bits, and we construct an efficient protocol that securely realizes
an ECOT functionality in the universal-composability (UC) framework.
Our construction is more efficient than previous (non-UC) constructions
of COT, involving only a constant number of exponentiations and com-
munication rounds. Using the ECOT functionality as a building block,
we construct efficient UC protocols for general two-party and multi-party
functionalities, each gate requiring a constant number of ECOT’s.

1 Introduction

Committed Oblivious Transfer (COT) was introduced by Crépeau [17] (un-
der the name “Verifiable Oblivious Transfer”) as a natural combination of (?)—
Oblivious Transfer [21] and Bit Commitment. At the start of the computation
Alice is committed to bits ag and a; and Bob is committed to bit b; at the end
Bob is committed to a; and knows nothing about az, while Alice learns nothing
about b. One can see that this allows each party engaged in an oblivious transfer
to be certain that the other party is performing the oblivious transfer operation
on their declared inputsl] This has been shown to be useful in [I8], who con-
struct a protocol for general secure multi-party computation in the model of [28]
using COT.

In this paper we show how to improve on previous constructions of COT in
the areas of efficiency and universal composability. In terms of efficiency, the pro-
tocol we construct for COT uses only a constant number of exponentiations and
communication rounds per transfer!q In contrast, the most efficient previously

! This contrasts with standard oblivious transfer, where some other method (perhaps
another cryptographic building block, or verification at some higher layer protocol)
is required to guarantee that parties are performing their part of the transfer on
their declared inputs.

2 Security is proved under some standard number theoretic assumptions, discussed
later.
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known construction of COT uses O(k) invocations of OT (thus implying
at least the same number of public-key operations using known constructions)
and bit commitments, and O(k) rounds, for k a security parameter. Further-
more, we show that our protocol securely realizes an ideal COT functionality in
the recently-proposed universal composability (UC) framework by Canetti [9],
in the common reference string (CRS) model. Recall that to define security in
this framework, one first specifies an “ideal functionality” describing the de-
sired behavior of the protocol using a trusted party, and then one proves that
a particular protocol operating in the real world “securely realizes” this ideal
functionality, by showing that no “environment” would be able to distinguish
(1) an adversary operating in the real world with parties running this protocol
from (2) an “ideal adversary” operating in an ideal process consisting of dummy
parties that simply call the ideal functionality. A main virtue of this framework
is that the security of protocols thus defined is preserved under a general com-
position operation called “universal composition,” which essentially means that
protocols remain secure even when composed with other protocols that may be
running concurrently in the same system. We give a more detailed review of the
UC framework later in the paper. We note that a similar framework was in-
dependently proposed by Pfitzmann and Waidner [37138]. Intuitively, these two
frameworks are similar, although there are a number of technical differences. We
choose to use the UC framework in this paperﬁ

Our protocol actually realizes an enhanced COT functionality, which we call
ECOT, where in addition to oblivious transfer, one can prove certain relations
among committed bits (in particular, among three bits). To demonstrate the
usefulness of this functionality, we show that using ECOT as a building block,
any well-formed two-party and multi-party functionality can be securely realized
efficiently in the universal composability framework. Plugging in our protocol for
realizing the ECOT into this construction, we have an efficient protocol for any
well-formed two-party and multi-party functionality in the CRS model.

Canetti et al. [LI] were the first to show that such functionalities are indeed
realizable in this model, even under general cryptographic assumptions and re-
gardless of the number of corrupted parties. More specifically, follows the
general “two-phase” approach of [27] of first designing a solution for the case of
honest-but-curious parties, and then turning it into a solution for the actively
malicious adversary, using a “compiler.” The compiler adds a zero-knowledge
proof to every message, proving that it is consistent with the history and the
(committed) private input and the randomness. Notice that since the “consis-
tency” proofs are for relations involving the execution of Turing machines, they
are quite complex and it is unlikely that they admit efficient protocols; rather,
proofs for general NP statements are used (which involve a reduction to an

3 The ideal-process/real-world formulation of security and the simulator-based
paradigm were initiated by Goldreich et al. [27]. From then on, there have been many
definitions in this (now standard) paradigm, with emphasis on different aspects. For
a number of examples, see Goldwasser and Levin [30], Micali and Rogaway [32],
Beaver [213], and Canetti [8], for the formulations that preceed the UC framework.
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NP-complete problem like Hamiltonian Cycle), making the compiler a major
source of inefficiency. Canetti et al. make the protocol in secure in the UC
framework by replacing the basic primitives (namely, oblivious transfer, bit com-
mitment, and zero-knowledge) with their universally composable counterparts.
The resultant protocol becomes universally composable, but remains rather in-
efficient. In this paper we follow a different approach. By incorporating stronger
security into the basic building block (i.e., ECOT), we are able to build proto-
cols secure against adaptive and malicious adversaries directly, eliminating the
need for a (normally inefficient) compiler. In this way, we are able to construct
protocols that are efficient and at the same time enjoy a high level of security.

Our results. We now present a more detailed account of our results. We start by
defining an ECOT functionality (Fgcor), which, as mentioned above, addition-
ally allows the sender to prove relations on three committed bits to the receiver.
Then we construct a protocol to realize the ECOT functionality. The starting
point for our construction is the standard Pedersen commitment scheme [35].
Then we build an OT protocol over these commitments that is loosely based on
the (non-concurrent version of the) OT protocol of Garay and MacKenzie [23]
(which in turn is based on the OT protocol of Bellare and Micali [4]). Zero-
knowledge (ZK) proofs are required in this OT protocol, and thus we work
in a hybrid model with ideal ZK functionalities. Naturally, the constructions for
proving relations on three committed bits also use these ideal ZK functionalities.
Finally, to construct efficient protocols that securely realize these ZK functional-
ities, we construct a special type of honest-verifier ZK protocol for each desired
relations, and then we use a result by Garay et al. that shows how to convert
this special type of honest-verifier ZK protocol into a universally-composable ZK
protocol. These results are presented in Section Bl

The ECOT functionality can be naturally extended into one that performs
(‘f)—transfers (instead of @)) and proves relations on four committed bits (as
opposed to three). We call this extended functionality Fpcor, and show how to
construct it using the original Frcor functionality as a building block. Equipped
with féCOT, we then show how to securely realize a two-party functionality that
we call Joint Gate Evaluation (Fjar), which, as its name indicates, allows two
parties to securely compute any Boolean function over two bits shared between
them. Essentially, the protocol realizing this functionality uses a construction
similar to that of [27] for the computation of the multiplication gate. However,
distinctive features of the protocol are that it deals directly with adaptively ma-
licious parties, and its efficiency: only a constant number of exponentiations and
communication rounds per gate evaluation. Joint Gate Evaluation is presented
in Section [l

Finally, we use Fjgg to securely realize — efficiently — any adaptively well-
formed two-party and multi-party functionality, which is expressed by an arith-
metic circuit over GF(2), in a universally-composable way. Again, since the
realization is directly for the actively malicious adversary, and by means of an
efficient building block, the overall computational complexity is a small constant
times the number of gates in the representation of the functionality, and the
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number of rounds is a constant times the depth of the circuit. The treatment of
two-party functionalities is presented in Section [B], while the case of multi-party
functionalities, with the one-to-many extensions and realizations of the required
building blocks, is discussed in Section [6] Putting everything together, we con-
struct efficient and universally composable two-party and multi-party computa-
tion protocols that are secure against adaptive adversaries in the erasing model,
where we allow parties to erase certain information reliably.

As a technical note, we use the gate-by-gate approach from [27], and make
sure that each gate is computed efficiently. We do not use the “encrypted circuit”
approach due to Yao [40], which yields constant-round protocols but is rather
inefficient in terms of communication complexity, since one needs to prove in
zero-knowledge that the encrypted circuit is correct and these proofs are unlikely
to admit efficient protocols.

Related work. We already mentioned prior work on COT [T7J1]]. Although the
protocols presented there are generic and hence may be implemented with or
without computational assumptions (e.g., using primitives based on quantum
channels), they are less efficient by at least a factor of k, where k is the se-
curity parameter, and furthermore, they are not universally composable. (As a
side note, a “stand-alone” version of our ECOT protocol would be substantially
simpler, in particular with respect to the implementation of the necessary ZK
proofs.)

We can also compare the ECOT functionality to the functionalities defined
in [11], who use a “two-phase” approach to construct universally composable
two-party /multiple-party computation protocols. In the first phase, where they
construct a protocol secure against semi-honest adversaries, an important tool is
the OT functionality. In the second phase, where they exhibit a “compiler” that
turns protocols in the first phase into ones secure against malicious adversaries,
an important tool is the “commit-and-prove” functionality, which proves general
NP statements. In some sense, the ECOT functionality may be viewed as a
“combination” of the OT functionality and the commit-and-prove functionality.
However, we stress that since ECOT only needs to prove very simple relations
(among three bits), it can be realized more efficiently.

Recently, Damgard and Nielsen [20] presented efficient universally compos-
able multi-party computation protocols using a different approach. Their con-
struction is based on an efficient MPC protocol by Cramer et al. [14], which in
turn is based on threshold homomorphic cryptosystems. Compared to our result,
the Damgard-Nielsen construction works in a slightly stronger model, namely the
public key infrastructure (PKI) model, where a trusted party not only generates
a common reference string (which contains the public keys of all the paries), but

4 We note that a commitment functionality with the capability to perform proofs on
committed bits was also proposed by Damgard and Nielsen [19], along with efficient
protocols realizing it under some specific number-theoretic assumptions. However,
it was not shown that their functionality could be used in constructing protocols for
general secure multi-party computation, and more specifically, oblivious transfer.
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also a private string for each party (as the party’s secret key). On the other hand,
their protocol is secure against adaptive adversaries in the so-called non-erasing
model, where the parties are not allowed to erase any information, while our
construction is secure in the erasing model only.

Due to space limitation, proofs are omitted from this extended abstract, but
may be found in the full version of this paper [25].

2 Preliminaries and Definitions

All our results are in the common reference string (CRS) model, which assumes
that there is a string uniformly generated from some distribution and is available
to all parties at the start of a protocol. This is a generalization of the public
random string model, where a uniform distribution over fixed-length bit strings
is assumed.

For a distribution A, we say a € A to denote any element that has non-zero
probability in A, i.e., any element in the support of A. We say a ¢~ A to denote
a is randomly chosen according to distribution A. For a set S, we say a < S to
denote that a is uniformly drawn from S.

2-protocols. We will use a special type of zero-knowledge protocols, namely,
2-protocols [24], which are variants of the so-called X-protocols [I5I13]. Very
roughly speaking, Y-protocols are three-round, public-coin, honest-verifier zero-
knowledge protocols, and {2-protocols are proof-of-knowledge X-protocols with
a straight-line extractor. See [24[25] for a detailed description of {2-protocols.

The universal composability framework. The universal composability framework
was suggested by Canetti for defining the security and composition of proto-
cols [9]. In this framework one first defines an “ideal functionality” of a protocol,
and then proves that a particular implementation of this protocol operating in a
given computational environment securely realizes this ideal functionality. The
basic entities involved are n players Py, ..., P,, an adversary A, and an environ-
ment Z. The real execution of a protocol 7, run by the players in the presence
of A and an environment machine Z, with input z, is modeled as a sequence of
activations of the entities. The environment Z is activated first, generating in
particular the inputs to the other players. Then the protocol proceeds by hav-
ing A exchanging messages with the players and the environment. Finally, the
environment outputs one bit, which is the output of the protocol.

The security of the protocols is defined by comparing the real execution of
the protocol to an ideal process in which an additional entity, the ideal func-
tionality F, is introduced; essentially, F is an incorruptible trusted party that is
programmed to produce the desired functionality of the given task. Let S denote
the adversary in this idealized execution. The players are replaced by dummy
players, who do not communicate with each other; whenever a dummy player is
activated, its input is forwarded to F by S, who can see the “public header” of
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the inputE As in the real-life execution, the output of the protocol execution is
the one-bit output of Z. Now a protocol 7 securely realizes an ideal functionality
F if for any real-life adversary A there exists an ideal-execution adversary S
such that no environment Z, on any input, can tell with non-negligible prob-
ability whether it is interacting with A4 and players running 7 in the real-life
execution, or with § and F in the ideal execution. More precisely, if the two
binary distribution ensembles, REAL, 4,z and IDEALf s =, describing Z’s out-
put after interacting with adversary A and players running protocol 7 (resp.,
adversary S and ideal functionality F), are computationally indistinguishable

(denoted REAL, 4z ~ IDEALF s z).

Protocols typically invoke other sub-protocols. In this framework the hy-
brid model is like a real-life execution, except that some invocations of the sub-
protocols are replaced by the invocation of an instance of an ideal functionality
F; this is called the “F-hybrid model.” We are designing and analyzing proto-
cols in the CRS model, and so they will be operating in the ]—'gRS—hybrid model,
where ngS is the functionality that chooses a string from distribution Dy, and
hands it to all parties. Further, we will consider the “multi-session extension of
F” of Canetti and Rabin [12], denoted F , which runs multiple copies of F by
identifying each copy by a special sub-session identifier.

The definition of FZi, the multi-session extension of FZ, is shown below.
Note the two types of indices: the sid, which differentiates messages to .7:'§K from
messages sent to other functionalities, and ssid, the sub-session identifier, which
is unique per input message (or proof).

Functionality _7:'%2}(
FER. proceeds as follows, running with security parameter k, parties Pi, ..., Py,
and an adversary S:

— Upon receiving (zk-prover, sid, ssid, P;, Pj, z,w) from P;: If R(xz,w) then send
(ZK-PROOF, sid, ssid, P;, Pj,x) to P; and S and halt. Otherwise, ignore.

Refer to [ITT] for further description of the UC framework.

3 Universally Composable Committed Oblivious Transfer

In this section we present the Fgcor functionality, an extension of COT where in
addition to the oblivious transfer, the sender can prove to the receiver (Boolean)
relations among the committed bits. We will later use this functionality to imple-
ment an efficient Joint Gate Fvaluation functionality, which in turn will enable
efficient and universally composable multi-party computation. The functionality
Frcor is shown below. Informally, a party P; commits to a bit b by sending
an ecot-commit message to the ideal functionality Fgcor, and P; can later open
this bit by sending an ecot-open message with appropriate commitment identifier

® This feature was added to the UC framework in [I1].
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(cid) value. For P; to obliviously transfer a bit to P;, P; needs to commit two bits
by and b; and P; needs to commit to one bit b;; after sending an ecot-transfer to
Frcot, the bit by, is transferred to P; and automatically committed by Frcor
on behalf of P;. Meanwhile, P; does not learn anything, except that a transfer
took place. Furthermore, the functionality also allows a party F; to prove to P;
that three bits by, b1, and by it committed to satisfy a particular binary relation
by sending an ecot-prove message to Frcor.

As a convention, we use opg) to denote a function on two bits, where m €
{0,1}* is the string of bits of the Boolean function’s truth table (output column).
We also often identify m with the integer whose binary representation is m. (For
example, m = 1 represents the AND function, whose truth table is 0001.)

As a technical note, we note that the Open phase is not strictly neces-
sary since it can be simulated by the Prove phase. Take °P§J20)00 and op:ﬁ)117
which correspond to the all-zero and all-one functions. Then, by proving that
opé%)oo(bo, b1) = by for arbitrary bits by and by, one essentially opens bit by to 0;
similarly, by proving that opﬁ)ll(bo7 b1) = by, one opens by to 1. We choose to
include the Open phase in the functionality for clarity and efficiency (the Open
phase can be realized more efficiently than the simulated Prove phase).

Functionality Frcor

Frcort proceeds as follows, running with parties P, ..., P, and an adversary

S.

— Commit phase: When receiving from FP; a message
(ecot-commit, sid, cid, P;,b), record (cid,P;, P;,b), send message
(ECOT-RECEIPT, sid, cid, P;, P;) to P;, P; and S, and ignore all
future messages of the form (ecot-commit, sid, cid, P;j, ) from P; and
(ecot-transfer, sid, cid, *, *, *, P;) from P;.

— Prove phase: When receiving from P; a message (ecot-prove, sid, ssid,
cidy, cidy, cidy, Pj,m), if the following three tuples, (cidy, P;, Pj,bo),
(cidy, Py, P;,by), (cidy, Ps, P;,by), are all recorded, and oply (by, by) =
by, then send message (ECOT-PROOF, sid, ssid, cidy, cidy, cida, P;, m)
to P; and S; otherwise do nothing.

— Transfer phase: When receiving from P; a message (ecot-transfer, sid,
cid, cidy, cidy, tcid, Py), if the following three tuples (cidy, P;, Pj,bo),
(cidy, P;, Pj,by), and (tcid, Pj, P;,by), are all recorded, send mes-
sage (ECOT-DATA, sid, cid, P;, P}, cidy, cidy, tcid, by,) to Pj, record
tuple (cid, Pj, P;,by,), and send message (ECOT-RECEIPT, sid, cid,
P, Pj, cidy, cidy, tcid) to P; and S, and ignore all future mes-
sages of the form (ecot-commit,sid,cid, P;, ) from P, and
(ecot-transfer, sid, cid, *, *, *, P;) from P;. Otherwise, do nothing.

— Open phase:  When  receiving from P, a  message
(ecot-open, sid, cid, P;, P;), if the tuple (cid, P;, P;,b) is recorded,
send message (ECOT-DATA, sid, cid, P;, Pj,b) to both S and P;;
otherwise, do nothing.
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Before presenting a protocol that securely realizes Frcor, we first discuss
some preliminary constructions that will be used as building blocks.

3.1 Building Blocks

In [24], Garay et al. introduced a technique to transform any (2-protocol into
a universally composable protocol by using a digital signature scheme that is
existentially unforgeable against adaptive chosen-message attacks. Their trans-
formation is efficient, if the digital signature scheme admits an efficient proof of
knowledge protocol. In particular, they proved the following result.

Theorem 1 ([24]). Under the strong RSA assumption or the DSA assumption,
for every relation R that admits an (2-protocol 11, there exists a three-round
protocol UC[II| that securely realizes the .7}5[( ideal functionality in the Fcrs-
hybrid model against adaptive adversaries, assuming erasing. Furthermore, the
(additive) overhead of UC[II] to II is constant number of exponentiations plus
the generation of a signature.

See [25] for discussion on the Strong RSA assumption.

Drawing from standard techniques in the literature (e.g., [6I722181124]), we
are able to construct efficient {2-protocols for the following relations; by then
“plugging” them into Theorem [I] we obtain efficient universally composable zero-
knowledge protocols for these relations. Due to space limitations, the detailed
construction of these f2-protocols appears in the full version .

1. “OR” of two discrete logs:
Ror-pL((¥0; 90, Y1, 91) (0, 1)) = RorL((yo, 90), 7o) V Ror((y1,91), 1)

2. “OR” /“AND?” relation of six discrete logs:

Ror-n-bL (Y0, Y1, Y2, Y3, Y4, Y5, 9), (To, T1, T2, T3, T4, T5)) =
((RoL((%0,9),w0) V RoL((y1,9),21)) A RoL((y2,9),z2)) V
(RoL((y3,9),23) A Rou((ya, 9),x4) A RoL((ys,9), x5))

3. Partial equality of representations:
Rperep (705 90, 91, 1, 92, 93), (0, a1, 2))
4. “OR” of partial equality of representations:

Ror-perep ((0, 90, 91515 925 93, Y0, ho, hi, y1, ha, hs), (a0, a1, a2, Bo, B1, B2)) =
Rperep (0, 90, 91, %1, 92, 93), (o, 0, a2)) V
Rperep (Yo, ho, hi, y1, he, hs), (Bo, 81, 52))
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3.2 The UCECOT Protocol

We now present UCECOT, a protocol that securely realizes the Frcor ideal
functionality in the (Fcrs, ﬁ?IgR'DL, ﬁ?{gR'N'DL, .7:'5’}2“9,.ﬁ;gR'PEREP)-hybrid model,
where the CRS consists of (p,q,g,h) such that ¢ and p are primes satisfying
ql(p — 1) and g, h € Z;, are random elements satisfying order(g) = order(h) = q.
p and ¢ will also serve as the public parameters in the relations Rp., Rperep,
and their compositions.

We first describe the protocol.

Commit phase: On receiving private input (ecot-commit, sid, cid, P}, b), as-
suming that cid is not used before, party P; picks a random r & Zq, computes
B+ g" - h® mod p, sends message (ucecot-commit, sid, cid, B) to party P,
message (zk-prover, sid, cid, P;, P;, (B, g,B/h, g), (r,7)) to ﬁf}%R'DL, and out-
puts (ECOT-RECEIPT, sid, cid, P;, P;). After receiving the messages from P;
and ﬁ;&R‘DL respectively, P; outputs (ECOT-RECEIPT, sid, cid, P;, P;).
Essentially P; sends a Pedersen commitment of bit b to P; and uses the
]:"?I‘QR'DL ideal functionality to prove that he either knows the discrete log of
B (in which case P; is committing to bit 0) or the discrete log of B/h base
g (in which case P; is committing to bit 1).

Prove phase: Suppose F; has committed bits by, b, and by to P; us-
ing cids cidy, cidy, and cids, respectively. Further assume that their
corresponding Pedersen commitments are By = g™ - A%, B; =
g™ - W', and By = g¢™ - k. Now, upon receiving private input
(ecot-prove, sid, ssid, cidy, cidy, cida, Pj,m), P; is to prove to P; that
opg)(bo,bl) = by, using sub-session id ssid. We first consider the sit-
uation where m = 1110, in which case opg) is the NAND operation.
In this situation, P; sends message (ucecot-prove, sid, ssid, cidy, cidy, cida,
m) to P; and sends message (zk-prover, sid, ssid, P;, P;, (Bo, B1, B /h, Bo/h,
Bi/h,Ba, ), (r0,71,72,70,71,72)) to ﬁf}gR'N'DL. After receiving the corre-
sponding message from }A"?IQR'N'DL, P; outputs (ECOT-PROOF, sid, ssid, cidy,
cidy, cidg, P;,m).

Intuitively, P; is proving that (((bp = 0) V (b1 = 0)) A (b = 1)) V ((bp =
1) A (b =1) A (b =0)).

In the case of any other binary operations opg), it can be written as a
composition of NANDs and then proved step by step. P; will need to commit
to all the intermediate bits and prove each NAND operation is correct. For
example, consider the case where m = 0001 is the AND operation. Notice
that Ay = x Ay A x Ay Therefore, to prove that by = by A by, P; needs to
commit to a new bit b3 = by A by using the protocol in the Commit phase,
and then prove that both b3 = by A by and that by = bz A bs.

Transfer phase: Suppose P; has committed bits by and by, and P; has com-
mitted bit by, using identifiers cidy, cidy, and tcid, respectively. Further as-
sume that the corresponding Pedersen commitments are By = g™ - h%0,
By = g™ - k", and B, = g™ - h**. Now, upone receiving private input
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ecot-transfer, sid, cid, cido, cidy, tcid, P;), assuming that cid is not used be-
fore, P; is to obliviously transfers bit b, to P;, using session id sid and the
commitment id cid for the new bit bp,. Intuitively, P; sends two Pedersen
commitments, Cy and C7, where C is a commitment to by using base By,
and C is a commitment to by using base B;/h. It also sends Ay and A; gen-
erated using the same randomness as Cy and C,. If by = 0, then P; knows
the discrete log of B; and can check if Cj is a commitment to zero or not,
and if b, = 1, then P; knows the discrete log of B;/h and can check if C is
a commitment to zero or not.
Now we proceed to the details. P; randomly picks ag,a; & Z4 and com-
putes Ag < g%, A; < g, Cy < B -h% and C; «+ (B;/h)® - h¥. P; then
sends message (ucecot-transfer, sid, cid, cidy, cidy, tcid, Ag, A1, Co, C1) to P;
and sends the following four messages to the ideal functionality ﬁ;&EREPE
(zk-prover, sid, cid o 00, P;, P;, (Cy, h, By, Bo, h, ), (bo, ag, r0))
(zk-prover, sid, cid o 01, P;, P;, (C1, h, B;/h, B1, h, g), (b1,a1,71))
(zk-prover, sid, cid o 10, P;, P;, (Ao, 9,1, Co, By, h), (ag,0,b))
(zk-prover, sid, cid o 11, P;, P;, (A1, g,1,C4, By /h, h), (a1,0,b1))
After this, P, erases ag and a;.
After receiving the message from P; and four messages from the ideal func-
tionality ﬁﬁzEREP, P; does the following (otherwise P; aborts).
If by = 0, then check if Af* = Cpmod p, and set b< 0 if yes and b+ 1
otherwise; if b; = 1, then check if A7 = C1 mod p, and sets b < 0 if yes and
b <1 otherwise. Now b is the bit P; receives.

Next, P; picks a random r & Zy and sets B<g" - h® mod p,
sends message (ecot-commit, sid, cid, B) to party P;, sends message
(zk-prover, sid, cid, Pj, P;, (Co, h, Ao, B, h,g,C41,h, A1, B, h,g), (b, r, T,
b,r¢,7)) to ideal functionality

ﬁ?IgR'PEREP7 and outputs (ECOT-DATA, sid, cid, P;, P}, cidy, cidy, tcid, b).
Finally, after receiving messages from P; and ﬁ?ﬁR'PEREP, P; outputs
(ECOT-RECEIPT, sid, cid, P;, P;, cidy, cidy, tcid).

Open phase: Suppose P; has committed a bit b to P; using session id sid,
and commitment id cid. Further assume that the commitment is B = ¢ -
h® mod p. Now upon receiving private input (ecot-open, sid, cid, P;, P;), P,
opens the bit b by sending message (ucecot-open, sid, cid, b, ) to P;, who then
verifies that B = ¢” - h® mod p, and outputs (ECOT-DATA, sid, cid, P;, P;,b)
if the verification is valid.

This is exactly the opening of a Pedersen commitment.

In the full version, we show:

5 We assume that all the id’s are binary strings, and we use “a o b” to indicate the
concatenation of string a with string b.
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Theorem 2. Under the DDH assumption, protocol UCECOT securely real-
1zes the Fgcor ideal functionality in the (fCRs,f;}gR'DL,f;ﬁR'N'DﬂfngREP,
f;IgR'PEREP)—hybrid model against adaptive, malicious adversaries, assuming eras-

mg.

4 Joint Gate Evaluation

In this section we show how to securely realize a two-party functionality that we
call Joint Gate Evaluation (Fygg) in the Frcor-hybrid model in the presence
of a malicious, adaptive adversary. Informally, Fjgg allows two parties to jointly
evaluate any binary operation on two bits, and this will allow us to construct
general two-party computation protocols on top of Fjgg. We first present the
functionality, shown below.

Functionality Fjqg

FigE proceeds as follows, running with parties Py, ..., P,, and adversary S.

— Commit phase: When receiving from P, a message
(commit, sid, cid, Pj,b), record (cid,{P;, P;},b), send message
(RECEIPT, sid, cid, P;, P;) to P;, P; and S, and ignore all further
messages of the form (commit, sid, cid, x, ) and (eval, sid, cid, , *, x, *)
from P; or P;, where x € {P;, P;}.

— Evaluate phase: When receiving from P; a mes-
sage (eval, sid, cid, cidy, cidy, P;, m), if both (cidy,{P;, P;},bo)
and (cidi,{P;, Pj},b1) are recorded, then compute
b = opg)(bo,bl), record (cid,{P;, P;},b), send message
<EVAL—RECE|PT,SZd, Cid, cido,cidl,Pi,Pj,m> to Pi, Pj and S,
and ignore all further messages of the form (commit, sid, cid, x, *) and
(eval, sid, cid, *, *,x,*) from P; or P;, where x € {P;, P;}. Otherwise,
do nothing.

— Open phase: When receiving from P; a message (open, sid, cid, P;),
if the tuple (cid,{P;,P;},b) 1is recorded, then send message
(DATA, sid, cid, P;, P;,b) to Pj; otherwise, do nothing.

At a high level, the approach we will use to realize functionality Fjgg is sim-
ilar to that in [26]11]. In particular, each bit stored in Fygr will be XOR-shared
by P; and P;, and each gate evaluation will be done by a (‘f)—oblivious trans-
fer. However, our resulting construction is directly secure against a malicious,
adaptive adversary, and therefore we do not need the “compiler” used in [26]
[I1]. This “direct” (as opposed to the “two-phase”) approach makes our protocol
much more efficient.

In particular, we will realize the Fjgg functionality using a further gener-
alization of the Frcor functionality, which we call féCOT. The Commit and
Open phases of Fpcor are identical to those of FrcoT, but the Transfer phase
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performs a (‘f)—transfer (instead of (f)), while the Prove phase proves relations
consisting of Boolean functions of three bits (as opposed to two).

The detailed descriptions of féCOT and a protocol that securely realizes it
in the Frcor-hybrid model appear in .

We now give a high-level idea of how the protocol will realize the Fjqg
functionality in the Fpcop-hybrid model. In the protocol, each bit b of identifier
cid stored in Fjgg is shared between P; and P; additively. More precisely, P;
has a bit b; and P; has a bit by such that b = by @ by. Furthermore, each of b;
and by is a random bit by itself. Both P; and P; will commit to their bits to
each other using identifier cid. To open this bit to P;, P; opens its share, ba, to
P;, who then computes b = by @ bs.

In order to evaluate ¢ = opfﬁ)(a, b), suppose P; holds a; and b; as shares of
a and b, and P; holds ay and by, respectively. Then, P; generates a random bit
c1 yad {0,1} and computes four bits ogg, 001,010,011, which are the “candidate
bits” for cy, P;’s share of bit c¢. Which bit is co depends on P;’s shares as and
bo. The actual bits are computed as in the table below.

l(az, bg)‘ Pj’s output c2 ‘

(0,0) |ooo = 1 @op@)(al,bl)

(0,1) |oo1 = 1 @ oplY (a1, (b1 & 1))
(1,0) 010 = c1 B op'?((a1 & 1),b1)

(L1) Jour =c1 B oplP ((ar @ 1), (b1 & 1))

P; then commits to the bits ¢y, 000, 001, 010,011 and proves to P; the relations in
the table using the Prove phase of ]—"éCOT. (We use mq, mq,ma, m3 to denote the
encodings of these relations.) Next, P; and P; engage in a (?)—oblivious transfer
so that P; receives bit 0g4,1,, which is P;’s share of bit c.

The full description of UCJGE, the protocol that securely realizes Fjqg in
the Facop-hybrid model, as well as the proof of the following theorem, appear

in [25].
Theorem 3. Protocol UCJGE securely realizes the Fygr functionality in the
féCOT—hybrid model against malicious, adaptive adversaries.

5 Efficient and Universally Composable Two-Party
Computation

In this section we show how to securely realize any adaptively well-formed two-
party functionality in the presence of malicious adaptive adversaries in the Fygp-
hybrid model. Our construction is similar to the constructions in [27126J11] for
semi-honest adversaries. However, since our Fjgg functionality is secure in the
presence of malicious adversaries, we are able to obtain a two-party protocol
secure against malicious adversaries directly.
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We first review some of the assumptions about two-party functionalities we
use in our paper, which are also used in [11]. We let F be an ideal two-party
functionality, and we let P; and P» be the participating parties. We assume that
F may be represented via a family Cx of Boolean circuits, the kth circuit repre-
senting an activation of F with security parameter k. Without loss of generality,
we assume the circuits are composed entirely of NAND gatesﬁ

For simplicity, we assume that in each activation, (1) at most one party has
an input to F with at most k bits, (2) each party may receive at most k bits
as output from F, (3) F is a deterministic function, and (4) the local state of
F after each activation can be described by at most k bits. The initial state of
F is described by k zero bits. We assume that messages sent from A to F are
ignored, and there are no messages from F to A.

We note that the “deterministic function” assumption about F is without
loss of generality, since we can always realize a probabilistic functionality F
using a deterministic one F’ as follows. Assuming that F needs k random bits,
then F’ receives a k-bit string as auxiliary input from each participating party
upon the first activation, and then runs F using the XOR of these strings as the
random bit string. It is easy to see that the simple protocol where each party
sends a random k-bit string as the auxiliary input to F’ securely realizes the
ideal functionality F in the F’-hybrid model§

The following protocol I1# realizes an activation of F when P; sends a mes-
sage to F. (The case for P, is analogous.) We assume that both P; and P, hold
an sid as auxiliary input. When P; is activated with input (sid,v), it initiate a
protocol with P5 to perform a joint gate-by-gate evaluation of the appropriate
circuit in Cr.

Formally, they carry out the following protocol.

Initialization: When P; receives (sid,v), it checks if this is the first activation
of F, and if so it sets up the internal state. Then it commits to its private
input.

Setting up the internal state: For ¢ = 1,2,...,k, P, sends messages
(commit, sid, cid;, P»,0) and then (open, sid, cid;, P») to Figgr. P waits
to receive the appropriate receipts. P, aborts if any of the bits are not
zero. Effectively, P; commits to the initial internal state of F (which is
all zeros), and by opening them immediately, it proves to P, that these
bits are indeed all-zero.

Committing to the private input: For i =1,2,....k, P; sends messages
(commit, sid, cid;, Py, v;) to Fygrg and waits to receive the appropriate

" This is entirely for simplicity. Note that the Fjgr functionality can be used to
evaluate any gate of fan-in two.

8 Note that if adaptive corruptions are allowed, then this is actually only true for
adaptively well-formed functionalities. See [11] for a discussion on this point, and the
modifications necessary for an ideal adversary in the case of probabilistic functions.

9 Note that the cid’s used here and elsewhere in the protocol must all be unique bit
strings that indicate the bit’s use in the circuit. For instance, the cid; here could be
the bit encoding of (state, ).
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receipts. Here we assume that v = vivg - - ’Uk P, simply records the
receipts received from Fjgg.

Gate-by-gate evaluation: For each NAND gate in the circuit, P; determines
the commitment identifiers associated with the inputs to that NAND gate,
say cidy and cidy, creates a new unique commitment identifier cid, sends
message (eval, sid, cid, cidy, cidy, P2,1110) to Fygg, and waits for the appro-
priate receipt. Here m = 1110 is the encoding of the NAND operation. P,
simply records the receipts received from Fjgg.

Output: P, verifies from all its receipts that P; had Fjgg perform the correct
computation on the appropriate bits. Then for each output bit of F, it
is either an internal state bit, or a bit addressed to either P, or P, (we
have assumed that F does not communicate with A). In the former case,
P, and P, do not need to do anything. They simply store the identifier
of this bit, so that they can use it in the next activation. In the latter
case, assuming that this bit, with identifier cid, is addressed to P», P; sends
a message (open, sid, cid, Py) to Fygr and P, extracts the bit b from the
message (DATA, sid, cid,{ Py, P2}, b) received from Fjgg. The protocol for
the case for a bit addressed to P; is the same, but with P; and P, switched.

Messages that are out of order are dealt with using tagging, as in .

Theorem 4. Let F be a two-party adaptively well-formed functionality. Then
Il r securely realizes F in the Fygg-hybrid model, in the presence of malicious
adaptive adversaries.

Proof appears in [25].

6 Efficient and Universally Composable Multi-party
Computation

In this section we show how to extend the results from previous sections to
securely realize any well-formed multi-party functionality in the presence of ma-
licious adaptive adversaries corrupting an arbitrary number of parties. Our con-
struction is similar to that in for semi-honest adversaries. But, again as in
the two-party case, we are able to construct building blocks that can withstand
malicious adversaries, and therefore our construction is secure against malicious,
adaptive adversaries directly.

In order to securely realize F, we basically follow the same approach as in
the two-party case. However, we first need to extend some of our constructions
from previous sections to suit the multiple-party case.

10 To indicate the use of each of these bits in the circuit, one could, for instance, set
cid; to be the bit encoding of (input, P1,a, ), where a is the activation number.
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6.1 Broadcast and the One-to-Many ZK Functionalities

We assume an authenticated broadcast channel available to all participating par-
ties. The channel is modeled by the broadcast functionality Fgc below. The
functionality guarantees the authenticity of a message, i.e., that no party P; can
fake a message from P;. This is also the assumption used in [I1], and we refer
the readers to for more in-depth discussions.

Functionality Fgc

Frc proceeds as follow, running with parties P, ..., P, and an adversary S.

— Upon receiving a message (broadcast, sid, P, z) from P;, where P is a set of
parties, send (BCAST-MSG, sid, P;, P, ) to all parties in P and S, and halt.

We also need an extension of the ZK functionality, namely the one-to-many
ZK functionality, denoted by Fzk. Intuitively, this functionality allows a single
prover to prove a theorem to multiple verifiers simultaneously. We give the
formal definition in [25].

We observe that the UCZK construction by Garay et al. [24] can be natu-
rally extended to a one-to-many UCZK protocol with the additional broadcast
functionality. Roughly speaking, P; (the prover) runs an independent copy of
the two-party UCZK protocol with every party P; € P using a unique sid,
and all messages are broadcast. Each P; accepts if and only if all the conver-
sations are accepting. It is straightforward to construct an ideal adversary S.
If the prover is uncorrupted, S simply runs a multi-party UCZK simulator for
every copy of the UCZK protocol. If the prover is corrupted and there is at least
one uncorrupted verifier, S can extract the witness. If all parties are corrupted,
the simulation is straightforward. The conversion remains efficient. Therefore we
have the following theorem.

Theorem 5. Under the strong RSA assumption or the DSA assumption, for ev-
ery relation R that admits an 2-protocol II, there exists a three-round protocol
UC[II] that securely realizes the FE,. ideal functionality in the (Fcrs, Fnc)-
hybrid model against adaptive adversaries, assuming erasing. Furthermore, the
computation complexity of UC[II] is that of II plus constant number of exponen-
tiations and the generation of a signature, times the number of receiving parties.

6.2 Multi-party ECOT

We also extend the Fgrcor functionality to the multi-party case, where the
proof phase is replaced by a one-to-many proof and the receipts are sent to all
participating parties. A formal definition of F,gcoT appears in [25].

It is straightforward to extend the UCECOT protocol to the multiple-party
case. One simply replaces the Fyzx functionalities by the F,zx functionalities
and replaces the point-to-point messages by broadcast messages. We denote the
extended protocol by UCmECOT, and we have the following theorem.
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Theorem 6. Under the DDH assumption, protocol UCmECOT securely realizes
the Furcor ideal functionality in the (]—'CRS,fBC,fﬁ%i{DL,fﬁ%ﬁ”'m,fﬁgﬁm,

2 Rog- . . ) . . .
F O PEREP ) -hybrid model against adaptive adversaries, assuming erasing.

6.3 Multi-party Joint Gate Evaluation

We extend the joint gate evaluation functionality to the multi-party case. Func-
tionality Fi,jqE is shown below. The only changes with respect to the two-party
case are that the receipts are sent to all participating parties, and that all parties
have to agree for the opening to take place.

Functionality F.,jqE

FicE proceeds as follows, running with parties Py, ..., P,, and adversary S.

— Commit phase: When receiving from P, a message
(commit, sid, cid, P, b), if P; € P, then record (cid, P, b), send message
(RECEIPT, sid, cid) to all parties in P and S, and ignore all further
messages of the form (commit, sid, cid, *, %) and (eval, sid, cid, , *, x, *).

— Evaluate phase: When receiving from P; a message (eval, sid,
cid, cidg, cidy, P, m), if P; € P and both (cidy, P, bo) and {cidy,P,by)
are recorded, then compute b = opg)(bo,bl), record (cid, P, by, send
message (EVAL-RECEIPT, sid, cid, cidy, cidy, P;, P, m) to all parties in P
and S, and ignore all further messages of the form (commit, sid, cid, *, *)
and (eval, sid, cid, x, *, %, ); otherwise, do nothing.

— Open phase:  When receiving from P; a message (open, sid, cid, P;),
it P, € P, P; € P, and the tuple (cid,P,b) is recorded, then record
tuple (openreq, sid, cid, P;). When a tuple (openreq, sid, cid, P;, P;) is
recorded for every P; € P, then send message (DATA, sid, cid, b) to P;.

In fact, we only need a “weakened” version of the Fy,jqr functionality for
general multi-party computation. The weakened version, denoted by Fymice,
has the additional constraint that only XOR and AND operations are allowed
in the evaluation phase. It is obvious that since {XOR, AND} is a complete set
of Boolean operations, Fymjge is powerful enough to realize any multi-party
functionality.

As in the two-party case, we also need an extension of the Fgcor func-
tionality, denoted by F2 oo, that performs (‘f)—oblivious transfer and proves

relations among four bits. We only state the following theorem and omit the
details.

Theorem 7. There exists an efficient protocol that securely realizes the Fi poor
Sfunctionality in the Funrcor-hybrid model against malicious, adaptive adver-
saries.

Next, we briefly sketch a protocol UCmJGE that securely realizes Fymjcg in
the F o oop-hybrid model. This protocol is essentially a multi-party extension to
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the UCJGE protocol. In UCmJGE, a bit b is now shared among all participating
parties: party P; has bit b; such that > . b, = b mod 2. In the following
description, we omit some details in the protocol such as the format of the
messages and the identifiers of the bits. These details should be clear from the
context.

Commit phase: For party P; to commit to a bit b, it generates random bits
bi,boy s byq & {0,1} and b, < b® by @ --- D by—1. Then P, commits to
b; through F2oor, sends bits b; to party P; for all j # i. Then each P;
commits to b; through the F .. ,r and opens it to P; immediately.
Evaluate phase: Assume the two bits to be computed are ¢ and b, and P;
holds bits a;, b; as their shares. Naturally we have a = ) a; mod 2 and
b = > b; mod 2. We assume the result bit is ¢ and each party should hold
a share ¢; at the end of this phase. We consider two cases according to the
operation performed.
XOR: To compute the XOR of bit a and b, each party simply computes
¢; = a; ® b;. No messages are needed.
AND: To compute the AND of bit a and b, we follow the approach in [26]
[TT]. Observe that AND is the multiplication modulo 2, and we have the
following equality.

i=1 i=1 i=1

1<i<j<n

(see [26] for the justification of this equality). Therefore, each party P;
can compute n-a;-b; by itself, and each pair P; and P; can jointly compute
(a;+a;) - (b; +b;) as in the two-party case, by invoking multiple transfer
phases of the 72 oo functionality.

Open phase: To open a bit b, shared as b = Y. b;, to party P;, every P;
opens its share b; through Fipcor- Then P; sums up all the shares to
obtain b.

Abort: In case any party aborts and/or deviates from the protocol, all parties
abort the protocol.

Theorem 8. Protocol UCmJGE securely realizes functionality Funyce in the

F2 scor-hybrid model against malicious, adaptive adversaries.

The proof is very similar to that of Theorem [3l Next, for any multi-party func-
tionality JF, we construct a protocol Il that securely realizes F in the F,jan-
hybrid model. The construction is almost identical to the two-party case, except
that since we assume the circuit computing F consists of AND and XOR gates,
instead of NAND gates, the gate-by-gate evaluation will invoke the Fy,jog func-
tionality with different encodings of functions. Again, we defer the detailed
construction and proof to the full version of this paper.

Theorem 9. Let F be a multi-party adaptively well-formed functionality. Then
Il r securely realizes F in the Fnyar-hybrid model, in the presence of malicious
adaptive adversaries.
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