Abstract
Combining multiple classifiers to achieve improved recognition results has become a popular technique in recent years. As for OCR systems, most investigations focus on fusion strategies on the character level. This paper describes a flexible framework for the combination of result strings which are the common output of commercial OCR systems. By synchronizing strings according to geometrical criteria, incorrect character segmentations can be avoided, while character recognition is improved by classical combination rules like Borda Count or Plurality Vote. To reduce computing time, further expert calls are stopped as soon as the quality of a temporary combination result exceeds a given threshold. The system allows easy integration of arbitrary new OCR systems and simplifies the determination of optimal system parameters by analyzing the input data at hand. Quantitative results are shown for a two-recognizer system, while the framework allows an arbitrary number of experts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aksela, M.: Comparison of Classifier Selection Methods for Improving Committee Performance. In: [WiRo 03], pp. 84–93
Alexandre, L., Campilho, A., Kamel, M.: On Combining Classifiers Using Sum and Product Rules. Pattern Recognition Letters 22, 1283–1289 (2001)
Alkoot, F.M., Kittler, J.: Experimental Evaluation of Expert Fusion Strategies. Pattern Recognition Letters 20, 1361–1369 (1999)
Altinçay, H., Demirekler, M.: Post-processing of Classifier Outputs in Multiple Classifier Systems. In: [RoKi02], pp. 159–168
Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 36, 105–139 (1999)
Bouchaffra, D., Govindaraju, V., Srihari, S.: A Methodology for Mapping Scores to Probabilities. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 923–927 (1999)
Constantinidis, A., Fairhurst, M., Rahman, A.: A New Multi-Expert Decision Combination Algorithm and its Application to the Detection of Circumscribed Masses in Digital Mammogramms. Pattern Recognition 34, 1527–1537 (2001)
Dietterich, T.G.: Ensemble Methods in Machine Learning. In: [KiRo00], pp. 1-15
Duin, R., Tax, D.: Experiments with Classifier Combining Rules. In: [KiRo00], pp. 16-29
van Erp, M., Schomaker, L.: Variants of the Borda Count Method for combining ranked classifier hypotheses. In: Proceedings FIHR 2000, pp. 443 - 452 (2000)
Fumera, G., Roli, F.: Linear Combination for Classifier Fusion: Some Theoretical and Experimental Results. In: [WiRo03], pp. 74-83
Giacinto, G., Roli, F.: Dynamic Classifier Selection Based on Multiple Classifier Behaviour. Pattern Recognition 34, 1879–1881 (2001)
Günter, S., Bunke, H.: New Boosting Algorithms for Classification Problems with Large Number of Classes Applied to Handwritten Word Recognition Task. In [WiRo03], pp. 326-335
Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE Trans. Pattern Analysis and Machine Intelligence 20, 832–844 (1998)
Kamel, M., Wanas, N., Data Dependence in Combining Classifiers. In: [WIRo03], pp. 1-14
Kittler, J., Roli, F. (eds.): Multiple Classifier Systems 2000. LNCS, vol. 1857. Springer, Heidelberg (2000)
Kittler, J., Roli, F. (eds.): Multiple Classifier System 2001. LNCS, vol. 2096. Springer, Heidelberg (2001)
Klink, S.: Entwurf, Implementierung und Vergleich von Algorithmen zum Merge von Segmentierungs- und Klassifikationsergebnissen unterschiedlicher OCRErgebnisse. Master Thesis, Kaiserslautern (1997)
Kuncheva, L., Bezdek, J., Duin, R.: Decision Templates for Multiple Classifier Fusion: an Experimental Comparison. Pattern Recognition 34, 299–314
Lam, L., Huang, Y.-S., Suen, C.: Combination of Multiple Classifier Decisions for Optical Character Recognition. In: Bunke, H., Wang, P.S.P. (eds.) Handbook of Character Recognition and Document Image Analysis, pp. 79–101. World Scientific, Singapore (1997)
Lin, X., Ding, X., Chen, M., Zhang, R., Wu, Y.: Adaptive Confidence Transform Based Classifier Combination for Chinese Character Recognition. Pattern Recognition Letters 19, 957–988 (1998)
Lin, X., Yacoub, S., Burns, J., Simske, S.: Performance Analysis of Pattern Classifier Combination by Plurality Voting. Pattern Recognition Letters 24, 1959–1969 (2003)
Marti, U.-V., Bunke, H.: Use of Positional Information in Sequence Alignment for Multiple Classifier Information. In [KiRo01] pp. 388-398
Masulli, F., Valentini, G.: Effectiveness of Error Correcting Output Coding Methods in Ensemble and Monolithic Learning Machines, Preprint, Università di Genova (2002)
Raudys, Š., Roli, F.: The Behavior Knowledge Space Fusion Method: Analysis of Generalization Error and Strategies for Performance Improvement. In: [RaR003], pp. 55-64
Kittler, J., Roli, F. (eds.): Multiple Classifier Systems 2002. LNCS, vol. 2364. Springer, Heidelberg (2002)
Ruta, D., Gabrys, B.: New Measure of Classifier Dependency in Multiple Classifier Systems. In: [RoKi02], pp. 127-136
Skurichina, M., Duin, R.: Bagging and the Random Subspace Method for Redundant Feature Spaces. In: [KiRo01], pp. 1-10
Sirlantzis, K., Hoque, S., Fairhurst, M.: Trainable Multiple Classifier Schemes for Handwritten Character Recognition. In: [RoKi02], pp. 169-178
Suen, Ch., Lam, L., Multiple Classifier Combination Methodologies for Different Output Levels. In: [KiRo00], pp. 52-66
Tax, D., van Breukelen, M., Duin, R., Kittler, J.: Combining Multiple Classifiers by Averaging or by Multiplying? Pattern Recognition 33, 1475–1485 (2000)
Verma, B., Gader, P., Chen, W.: Fusion of Multiple Handwritten Word Recognition Techniques. Pattern Recognition Letters 22, 991–998 (2001)
Wang, W., Brakensiek, A., Rigoll, G.: Combination of multiple classifiers for handwritten word recognition. In: 8th Int. Workshop on Frontiers in Handwriting Recognition, pp. 117-122 (2002)
Wang, J., Yan, H.: A Hybrid Method for Unconstrained Handwritten Numeral Recognition by Combining Structural and Neural Gas Classifiers. Pattern Recognition Letters 21, 625–635 (2000)
Wilczok, L., Lellmann, W.: Design and Evaluation of an Adaptive Combination Framework for OCR Result Strings. In: [WiRo03], pp. 395-404
Windeatt, T., Roli, F. (eds.): Multiple Classifier Systems 2003. LNCS, vol. 2709. Springer, Heidelberg (2003)
Xu, L., Krzyżak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Transactions on Systems, Man and Cybernetics 22, 418–435 (1992)
Ye, X., Cheriet, M., Suen, C.Y.: StrCombo: combination of string recognizers. Pattern Recognition Letters 23, 381–394 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Wilczok, E., Lellmann, W. (2004). Adaptive Combination of Commercial OCR Systems. In: Dengel, A., Junker, M., Weisbecker, A. (eds) Reading and Learning. Lecture Notes in Computer Science, vol 2956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24642-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-24642-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21904-0
Online ISBN: 978-3-540-24642-8
eBook Packages: Springer Book Archive