Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2958))

Abstract

Processor virtualization is a powerful technique that enables the runtime system to carry out intelligent adaptive optimizations like dynamic resource management. Charm++ is an early language/system that supports processor virtualization. This paper describes Adaptive MPI or AMPI, an MPI implementation and extension, that supports processor virtualization. AMPI implements virtual MPI processes (VPs), several of which may be mapped to a single physical processor. AMPI includes a powerful runtime support system that takes advantage of the degree of freedom afforded by allowing it to assign VPs onto processors. With this runtime system, AMPI supports such features as automatic adaptive overlap of communication and computation and automatic load balancing. It can also support other features such as checkpointing without additional user code, and the ability to shrink and expand the set of processors used by a job at runtime. This paper describes AMPI, its features, benchmarks that illustrate performance advantages and tradeoffs offered by AMPI, and application experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fox, G., Williams, R., Messina, P.: Parallel Computing Works. Morgan Kaufman, San Francisco (1994)

    Google Scholar 

  2. Naik, V.K., Setia, S.K., Squillante, M.S.: Processor allocation in multiprogrammed distributed-memory parallel computer systems. Journal of Parallel and Distributed Computing (1997)

    Google Scholar 

  3. Kalé, L., Krishnan, S.: CHARM++: A Portable Concurrent Object Oriented System Based on C++. In: Paepcke, A. (ed.) Proceedings of OOPSLA 1993, pp. 91–108. ACM Press, New York (1993)

    Google Scholar 

  4. Kale, L.V., Krishnan, S.: Charm++: Parallel Programming with Message-Driven Objects. In: Wilson, G.V., Lu, P. (eds.) Parallel Programming using C++, pp. 175–213. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: Mpich: A high-performance, portable implementation of the mpi message passing interface standard. Parallel Computing 22, 789–828 (1996)

    Article  MATH  Google Scholar 

  6. Burns, G., Daoud, R., Vaigl, J.: Lam: An open cluster environment for mpi. In: Proceedings of Supercomputing Symposium 1994, Toronto, Canada (1994)

    Google Scholar 

  7. Stellner, G.: CoCheck: Checkpointing and Process Migration for MPI. In: Proceedings of the 10th International Parallel Processing Symposium (IPPS 1996), Honolulu, Hawaii (1996)

    Google Scholar 

  8. Agbaria, A., Friedman, R.: StarFish: Fault-tolerant dynamic mpi programs on clusters of workstations. In: 8th IEEE International Symposium on High Performance Distributed Computing (1999)

    Google Scholar 

  9. MPI-Lite, Parallel Computing Lab, University of California, http://may.csucla.edu/projects/sesame/mpi_lite/mpi_lite.html

  10. Tang, H., Shen, K., Yang, T.: Program transformation and runtime support for threaded MPI execution on shared-memory machines. ACM Transactions on Programming Languages and Systems 22, 673–700 (2000)

    Article  Google Scholar 

  11. Kalé, L.V.: The virtualization model of parallel programming: Runtime optimizations and the state of art. In: LACSI 2002, Albuquerque (2002)

    Google Scholar 

  12. Lawlor, O., Kalé, L.V.: Supporting dynamic parallel object arrays. In: Proceedings of ACM 2001 Java Grande/ISCOPE Conference, Stanford, CA, pp. 21–29 (2001)

    Google Scholar 

  13. Kale, L.V., Bhandarkar, M., Brunner, R.: Run-time systems for parallel programming. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 1152–1159. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  14. Brunner, R.K., Kalé, L.V.: Adapting to load on workstation clusters. In: The Seventh Symposium on the Frontiers of Massively Parallel Computation, pp. 106–112. IEEE Computer Society Press, Los Alamitos (1999)

    Chapter  Google Scholar 

  15. Kalé, L.V., Kumar, S., DeSouza, J.: An adaptive job scheduler for timeshared parallel machines. Technical Report 00-02, Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana-Champaign (2000)

    Google Scholar 

  16. Saboo, N., Singla, A.K., Unger, J.M., Kalé, L.V.: Emulating petaflops machines and blue gene. In: Workshop on Massively Parallel Processing (IPDPS 2001), San Francisco, CA (2001)

    Google Scholar 

  17. Mahesh, K.: Ampizer: An mpi-ampi translator. Master’s thesis, Computer Science Department, University of Illinois at Urbana-Champiagn (2001)

    Google Scholar 

  18. Blume, W., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Petersen, P., Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Polaris: Improving the effectiveness of parallelizing compilers. In: Pingali, K.K., Gelernter, D., Padua, D.A., Banerjee, U., Nicolau, A. (eds.) LCPC 1994. LNCS, vol. 892, pp. 141–154. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  19. Antoniu, G., Bouge, L., Namyst, R.: An efficient and transparent thread migration scheme in the PM 2 runtime system. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 496–510. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  20. Kale, L.V., Kumar, S., Vardarajan, K.: A framework for collective personalized communication, communicated to ipdps 2003. Technical Report 02-10, Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana-Champaign (2002)

    Google Scholar 

  21. Kale, L.V., Kumar, S.: Scaling collective multicast on high performance clusters. Technical Report 03-04, Parallel Programming Laboratory, Department of Computer Science, University of Illinois at Urbana-Champaign (2003)

    Google Scholar 

  22. IBM Parallel Enviroment for AIX. MPI Subroutine Reference, http://publib.boulder.ibm.com/doc_link/en_US/a_doc_lib/sp34/pe/html/am107mst.html

  23. Stellner, G.: Cocheck: Checkpointing and process migration for mpi. In: Proceedings of the International Parallel and Distributed Processing Symposium, pp. 526–531. IEEE Computer Society Press, Los Alamitos (1996)

    Google Scholar 

  24. Lemieux, Pittsburgh Supercomputing Center, http://www.psc.edu/machines/tcs/lemieux.html

  25. Vadali, R., Kale, L.V., Martyna, G., Tuckerman, M.: Scalable parallelization of ab initio molecular dynamics. Technical report, UIUC, Dept. of Computer Science (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, C., Lawlor, O., Kalé, L.V. (2004). Adaptive MPI. In: Rauchwerger, L. (eds) Languages and Compilers for Parallel Computing. LCPC 2003. Lecture Notes in Computer Science, vol 2958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24644-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24644-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21199-0

  • Online ISBN: 978-3-540-24644-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics