Skip to main content

On the Foundations of Computing Science

  • Conference paper
Metainformatics (MIS 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3002))

Included in the following conference series:

  • 203 Accesses

Abstract

In the present work, it is observed and demonstrated that the foundations of computing science, and even of science and logics, include forms of inference that are not regarded as valid, in neither logical nor scientific way. The present paper also shows two paradoxes of logics and scientific methods. Taking into consideration a certain rigor, the present paper argues that computing science is not mathematical logics, and that philosophy, psychology and other human sciences are in the foundations of that science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abramsky, S.: Domain Theory. In: Handbook of Logic in Computer Science. Semantic Structures, vol. 3, pp. 1–168. Oxford University Press, Oxford (1994)

    Google Scholar 

  2. Allison, L.: A Practical Introduction to Denotational Semantics. Cambridge Computer Science, vol. 23. Cambridge University Press, Cambridge (1995) (reprinted 1995)

    Google Scholar 

  3. Amadio, R., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge Tracts in Theoretical Computer Science, vol. 46. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  5. Bibel, W., Eder, E.: Methods and Calculi for Deduction. In: Handbook of Logic in Artificial Intelligence and Logic Programming, Logical Foundations, vol. 1, pp. 67–182. Oxford University Press, Oxford (1993)

    Google Scholar 

  6. Blackburn, S.: The Oxford Dictionary of Philosophy. Oxford University Press, Oxford (1994)

    Google Scholar 

  7. Burrell, D.: Analogy and Philosophical Language. Yale University Press (1973)

    Google Scholar 

  8. Chagrov, A., Zakharyaschev, M.: Complexity Problems. In: Modal Logic, vol. 35, Oxford University Press, Oxford (1997)

    Google Scholar 

  9. Dummett, M.: The Philosophical Basis of Intuitionistic Logic. In: The Philosophy of Mathematics, Oxford Readings in Philosophy, Oxford University Press, Oxford (1996)

    Google Scholar 

  10. Epstein, R.L.: Intuitionism. In: The Semantics Foundations of Logic, p. 277. Oxford University Press, Oxford (1995)

    Google Scholar 

  11. Ferreira, J.U.: The plain www page (1996), http://www.ufba.br/~plain or http://www.cs.tcd.ie/~ferreirj

  12. Ferreira, J.U.: uu for programming languages. ACM SIGPLAN Notices 35(8), 20–30 (2000)

    Article  Google Scholar 

  13. Ferreira, J.U.: uu in Globallog. In: Computation in the Real World: foundations and programming languages concepts, ch. 9 (2001), PhD thesis, The Trinity College, University of Dublin (2001)

    Google Scholar 

  14. Ferreira, J.U.: Computation in the Real World: foundations and programming languages concepts. PhD thesis, The Trinity College, University of Dublin (2001)

    Google Scholar 

  15. Forrest, P.: The Dynamics of Belief: A Normative Logic. Philosophical Theory. Basil Blackwell (1996)

    Google Scholar 

  16. Gillies, D.: The Inductivist Controversy, or Bacon versus Popper. In: Artificial Intelligence and Scientific Method, ch. 1, pp. 1–16. Oxford University Press, Oxford (1996)

    Google Scholar 

  17. Gillies, D.: Can there be an inductive logic? In: Artificial Intelligence and Scientific Method, pp. 98–112. Oxford University Press, Oxford (1996)

    Google Scholar 

  18. Girard, J.-Y., Taylor, P., Lafont, Y.: Proofs and Types. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  19. Gunter, C., Scott, D.: Semantic Domains. In: Handbook of Theoretical Computer Science. Formal Models and Semantics, vol. B, The MIT Press/Elsevier (1990)

    Google Scholar 

  20. Gunter, C.A.: Semantics of Programming Languages: structures and techniques. Foundations of Computing Series. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  21. Hacking, I.: What Is Logic? In: What Is a Logical System? Studies in Logic and Computation, vol. 4, pp. 1–33. Claredon Press, Oxford University (1994)

    Google Scholar 

  22. Jung, C.G., Storr, A.: Psychological Typology (1936). In: Jung: Selected Writings, 2nd edn. Fontana Pocket Readers, Fontana Paperbacks, pp. 133–146 (1986), Selected and Introduced by Anthony Storr

    Google Scholar 

  23. Kant, I., translation by Smith, N.K.: Immanuel Kant’s Critique of Pure Reason. Macmillan Press Ltd. 1787, Basingstoke (1929)

    Google Scholar 

  24. Kerlinger, F.N., Lee, H.B.: Foundations of Behavioral Research, 4th edn. Harcourt College Publishers (2000)

    Google Scholar 

  25. Klop, J.W.: Term Rewriting Systems. In: Handbook of Logic in Computer Science, Background: Computational Structures, vol. 2, Oxford University Press, Oxford (1992)

    Google Scholar 

  26. Kosko, B.: Fuzzy Thinking: The New Science of Fuzzy Logic. HarperCollinsPublishers, Flamingo (1994)

    Google Scholar 

  27. Lane, S.M.: Categories for the Working Mathematician, 2nd edn. Graduate texts in mathematics. Springer, Heidelberg (1998), Previous edition: 1971

    MATH  Google Scholar 

  28. Lawvere, F.W., Schanuel, S.H.: Conceptual Mathematics: a first introduction to categories. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  29. Maddy, P.: Perception and Mathematical Intuition. In: The Philosophy of Mathematics, Oxford Readings in Philosophy, Oxford University Press, Oxford (1996)

    Google Scholar 

  30. Mitchell, J.C.: Foundations for Programming Languages. The MIT Press, Cambridge (1996)

    Google Scholar 

  31. Ong, C.-H.L.: Correspondence Beteen Operational and Denotational Semantics: the full abstraction problem for PCF. In: Handbook of Logic in Computer Science, vol. 4, pp. 269–356. Oxford University Press, Oxford (1995)

    Google Scholar 

  32. Parsons, C.: Mathematical Intuition. In: The Philosophy of Mathematics, Oxford Readings in Philosophy, Oxford University Press, Oxford (1996)

    Google Scholar 

  33. Popper, K.: The Logic of Scientific Discovery. Karl Popper (1972)

    Google Scholar 

  34. Russell, B.: History of Western Philosophy. The Romantic Movement, Routledge, vol. III, part 2, ch. 18, pp. 651–659 (1946) (edition published in 2000)

    Google Scholar 

  35. Russell, B.: History of Western Philosophy, Routledge, vol. I, part 2, pp. 101–226 (1946), Edition published in (2000)

    Google Scholar 

  36. Schmidt, D.A.: The Structure of Typed Programming Languages. Foundations of Computing Series. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  37. Swain, M. (ed.): Induction, Acceptance, and Rational Belief. D. Reidel Publishing Company (1970)

    Google Scholar 

  38. Tennent, R.D.: Semantics of Programming Languages. PHI series in computer science. Prentice-Hall, Englewood Cliffs (1991)

    Google Scholar 

  39. Tennent, R.D.: Denotational Semantics. In: Handbook of Logic in Computer Science, Semantic Structures, vol. 3, pp. 170–322. Oxford University Press, Oxford (1994)

    Google Scholar 

  40. van Heijenoort, J.: From Frege to Gödel. Harvard University Press, Cambridge (1967)

    MATH  Google Scholar 

  41. Walters, R.F.C.: Categories and Computer Science. Computer Science Texts. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferreira, U. (2004). On the Foundations of Computing Science. In: Hicks, D.L. (eds) Metainformatics. MIS 2003. Lecture Notes in Computer Science, vol 3002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24647-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24647-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22010-7

  • Online ISBN: 978-3-540-24647-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics