Skip to main content

Effort Estimation Based on Collaborative Filtering

  • Conference paper
Product Focused Software Process Improvement (PROFES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3009))

Abstract

Effort estimation methods are one of the important tools for project managers in controlling human resources of ongoing or future software projects. The estimations require historical project data including process and product metrics that characterize past projects. Practically, in using the estimation methods, it is a problem that the historical project data frequently contain substantial missing values. In this paper, we propose an effort estimation method based on Collaborative Filtering for solving the problem. Collaborative Filtering has been developed in information retrieval researchers, as one of the estimation techniques using defective data, i.e. data having substantial missing values. The proposed method first evaluates similarity between a target (ongoing) project and each past project, using vector based similarity computation equation. Then it predicts the effort of the target project with the weighted sum of the efforts of past similar projects. We conducted an experimental case study to evaluate the estimation performance of the proposed method. The proposed method showed better performance than the conventional regression method when the data had substantial missing values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Albrecht, A., Gaffney, J.: Software Function, Source Lines of Code, and Development Effort Prediction. IEEE Trans. on Software Eng. 9(6), 83–92 (1979)

    Google Scholar 

  2. Boehm, B.W.: Software Engineering Economics. IEEE Trans. on Software Eng. 10(1), 4–21 (1984)

    Article  Google Scholar 

  3. Breese, J.S., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of the 14th Conf. on Uncertainty in Artificial Intelligence, pp. 43–52 (1998)

    Google Scholar 

  4. Briand, L., Basili, V., Thomas, W.: A Pattern Recognition Approach for Software Engineering Data Analysis. IEEE Trans. on Software Eng. 18(11), 931–942 (1992)

    Article  Google Scholar 

  5. Briand, L., El Eman, K., Wieczorek, I.: Explaining the Cost of European Space and Military Projects. Proc. Int’l Conf. Software Eng. 1(1), 61–88 (1996)

    Google Scholar 

  6. Conte, S.D., Dunsmore, H.E., Shen, V.Y.: Software Engineering Metrics and Models. The Benjamin/Cummings Publishing Company, Inc., Menlo Park (1986)

    Google Scholar 

  7. Finnie, G., Wittig, G.: A Comparison of Software Effort Estimation Techniques: Using Function Points with Neural Networks, Case-Based Reasoning and Regression Models. Journal of Systems and Software 39, 281–289 (1997)

    Article  Google Scholar 

  8. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Comm. of the ACM 35(12), 61–70 (1992)

    Article  Google Scholar 

  9. Gray, A., MacDonnell, D.: A Comparison of Techniques for Developing Predictive Models of Software Metrics. Information and Software Technology 3, 425–437 (1997)

    Article  Google Scholar 

  10. Little, R., Rubin, D.: Statistical Analysis with Missing Data. John Wiley & Sons, Inc., Chichester (1987)

    MATH  Google Scholar 

  11. Khoshgoftaar, T.M., Munson, J.C., Bhattacharya, B.B., Richardson, G.D.: Predictive Modeling Techniques of Software Quality from Software Measures. IEEE Trans. on Software Eng. 18(1), 979–987 (1992)

    Article  Google Scholar 

  12. Kromrey, J., Hines, C.: Nonrandomly Missing Data in Multiple Regression: An Empirical Comparison of Common Missing-Data Treatments. Educational and Psychological Measurement 54(3), 573–593 (1994)

    Article  Google Scholar 

  13. Rahhal, S., Madhavji, N.: An Effort Estimation Model for Implementing ISO 9001. In: Proc. of the 2nd IEEE Int’l Software Eng. Standards Symp., pp.278–286 (1995)

    Google Scholar 

  14. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An Open Architecture for Collaborative Filtering of Netnews. In: Proc. ACM Conf. on Computer Supported Cooperative Work (CSCW 1994), Chapel Hill, North Carolina, United States, pp. 175–186 (1994)

    Google Scholar 

  15. Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  16. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J.: Item-Based Collaborative Filtering Recommendation Algorithms. In: Proc. 10th International World Wide Web Conference (WWW10), Hong Kong, pp. 285–295 (2001)

    Google Scholar 

  17. Shepperd, M., Schofield, C.: Estimating Software Project Effort Using Analogies. IEEE Trans. on Software Eng. 23(12), 76–743 (1997)

    Google Scholar 

  18. Srinivasan, K., Fisher, D.: Machine Learning Approaches to Estimating Software Development Effort. IEEE Trans. on Software Eng. 21(2), 126–137 (1995)

    Article  Google Scholar 

  19. Strike, K., El Eman, K., Madhavji, N.: Software Cost Estimation with Incomplete Data. IEEE Trans. on Software Eng. 27(10), 890–908 (2001)

    Article  Google Scholar 

  20. Walston, C., Felix, C.: A Method of Programming Measurement and Estimation. IBM Systems Journal 1, 54–73 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohsugi, N., Tsunoda, M., Monden, A., Matsumoto, Ki. (2004). Effort Estimation Based on Collaborative Filtering. In: Bomarius, F., Iida, H. (eds) Product Focused Software Process Improvement. PROFES 2004. Lecture Notes in Computer Science, vol 3009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24659-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24659-6_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21421-2

  • Online ISBN: 978-3-540-24659-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics