Skip to main content

Abstract

This paper addresses the question of selecting an algorithm from a predefined set that will have the best performance on a scheduling problem instance. Our goal is to reduce the expertise needed to apply constraint technology. Therefore, we investigate simple rules that make predictions based on limited problem instance knowledge. Our results indicate that it is possible to achieve superior performance over choosing the algorithm that performs best on average on the problem set. The results hold over a variety of different run lengths and on different types of scheduling problems and algorithms. We argue that low-knowledge approaches are important in reducing expertise required to exploit optimization technology.

This work has received support from Science Foundation Ireland under Grant 00/PI.1/C075 and ILOG, SA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rice, J.: The algorithm selection problem. Advances in Computers 15, 65–118 (1976)

    Article  Google Scholar 

  2. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: The case of combinatorial auctions. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Minton, S.: Automatically configuring constraint satisfaction programs: A case study. CONSTRAINTS 1, 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  4. Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., Chickering, M.: A bayesian approach to tacking hard computational problems. In: Proceedings of the Seventeenth Conference on uncertainty and Artificial Intelligence (UAI 2001), pp. 235–244 (2001)

    Google Scholar 

  5. Kautz, H., Horvitz, E., Ruan, Y., Gomes, C., Selman, B.: Dynamic restart policies. In: Proceedings of the Eighteenth National Conference on Artifiical Intelligence (AAAI 2002), pp. 674–681 (2002)

    Google Scholar 

  6. Ruan, Y., Horvitz, E., Kautz, H.: Restart policies with dependence among runs: A dynamic programming approach. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 573–586. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Watson, J.P.: Empirical Modeling and Analysis of Local Search Algorithms for the Job-Shop Scheduling Problem. PhD thesis, Dept. of Computer Science, Colorado State University (2003)

    Google Scholar 

  8. Watson, J.P., Barbulescu, L., Whitley, L., Howe, A.: Constrasting structured and random permutation flow-shop scheduling problems: search-space topology and algorithm performance. INFORMS Journal on Computing 14 (2002)

    Google Scholar 

  9. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem. Management Science 42, 797–813 (1996)

    Article  MATH  Google Scholar 

  10. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics. Artificial Intelligence 117, 31–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nuijten, W.P.M.: Time and resource constrained scheduling: a constraint satisfaction approach. PhD thesis, Department of Mathematics and Computing Science, Eindhoven University of Technology (1994)

    Google Scholar 

  12. Laborie, P.: Algorithms for propagating resource constraints in AI planning and scheduling: Existing approaches and new results. Artificial Intelligence 143, 151–188 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Information Processing Letters 47, 173–180 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Scheduler: ILOG Scheduler 5.2 User’s Manual and Reference Manual. ILOG, S.A. (2001)

    Google Scholar 

  15. Beck, J.C., Perron, L.: Discrepancy-bounded depth first search. In: Proceedings of the Second International Workshop on Integration of AI and OR Technologies for Combinatorial Optimization Problems, CPAIOR 2000 (2000)

    Google Scholar 

  16. Cohen, P.R.: Empirical Methods for Artificial Intelligence. The MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  17. Beck, J.C., Refalo, P.: Combining local search and linear programming to solve earliness/tardiness scheduling problems. In: Proceedings of the Fourth International Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR 2002 (2002)

    Google Scholar 

  18. Vazquez, M., Whitley, L.D.: A comparision of genetic algorithms for the dynamic job shop scheduling problem. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 1011–1018. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beck, J.C., Freuder, E.C. (2004). Simple Rules for Low-Knowledge Algorithm Selection. In: Régin, JC., Rueher, M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2004. Lecture Notes in Computer Science, vol 3011. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24664-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24664-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21836-4

  • Online ISBN: 978-3-540-24664-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics