Skip to main content

Multi-expert Systems

  • Conference paper
Parallel Processing and Applied Mathematics (PPAM 2003)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3019))

Abstract

In this paper, a multi-expert classification system (MECS), composed of two main parts performing the so-called multi-stage classification (MSC) and multi-expert classification (MEC), is proposed. The former (MSC) produces either correct decisions or the ”I do not know” (IDNK) answers, so there are not misclassifications. The latter (MEC) is a parallel system that includes different classifiers, for the objects not classified by the MSC system (resulting in the IDNK answers). A medical diagnosis example illustrates the perception-based approach employed in the MSC system, and the need for application of the MEC system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E.: Pattern Classification and Sciene Analysis. John Wiley & Sons, New York (1973)

    Google Scholar 

  2. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7, 179–188 (1936)

    Google Scholar 

  3. Kuncheva, L.I.: Fuzzy Classifier Design. Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York (2000)

    MATH  Google Scholar 

  4. Mertz, C.J., Murphy, P.M.: UCI repository of machine learning databases, http://www.ics.uci.edu/pub/machine-learning-databases

  5. Rutkowska, D.: Neuro-Fuzzy Architectures and Hybrid Learning. Physica-Verlag, A Springer-Verlag Company, Heidelberg, New York (2002)

    MATH  Google Scholar 

  6. Rutkowska, D.: A perception-based classification system. In: Proc. CIMCA 2003 Conference, Vienna, Austria, pp. 52–61 (2003)

    Google Scholar 

  7. Rutkowska, D.: Perception-based systems for medical diagnosis. In: Proc. Third EUSFLAT 2003, Zittau, Germany, pp. 741–746 (2003)

    Google Scholar 

  8. Rutkowska, D.: Perception-based expert systems. Soft Computing Journal (2003) (submitted)

    Google Scholar 

  9. Zadeh, L.A.: From computing with numbers to computing with words – from manipulation of measurements to manipulation of perceptions. IEEE Trans. Circuits and Systems - I: Fundamental Theory and Applications 45(1), 105–119 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rutkowska, D. (2004). Multi-expert Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2003. Lecture Notes in Computer Science, vol 3019. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24669-5_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24669-5_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21946-0

  • Online ISBN: 978-3-540-24669-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics