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Abstract. This paper describes a real-time system for multi-target
tracking and classification in image sequences from a single stationary
camera. Several targets can be tracked simultaneously in spite of splits
and merges amongst the foreground objects and presence of clutter in
the segmentation results. In results we show tracking of upto 17 targets
simultaneously. The algorithm combines Kalman filter-based motion and
shape tracking with an efficient pattern matching algorithm. The latter
facilitates the use of a dynamic programming strategy to efficiently solve
the data association problem in presence of multiple splits and merges.
The system is fully automatic and requires no manual input of any kind
for initialization of tracking. The initialization for tracking is done us-
ing attributed graphs. The algorithm gives stable and noise free track
initialization. The image based tracking results are used as inputs to
a Bayesian network based classifier to classify the targets into different
categories. After classification a simple 3D model for each class is used
along with camera calibration to obtain 3D tracking results for the tar-
gets. We present results on a large number of real world image sequences,
and accurate 3D tracking results compared with the readings from the
speedometer of the vehicle. The complete tracking system including seg-
mentation of moving targets works at about 25Hz for 352×288 resolution
color images on a 2.8 GHz pentium-4 desktop.

1 Introduction

This paper address several problems of tracking and classifying multiple targets
in real-time, which can be used for behavior analysis of the moving targets.
Several new ideas have been developed to solve the problem of Multi-Target
Tracking (MTT) in 3D under the following assumptions: 1. Image sequences
are obtained from a single stationary camera looking down into the scene. 2.
The targets are moving on a ground plane and some 3D measurements on the
ground and their corresponding locations in the image are available for camera
calibration. In this paper the problem of MTT is formulated as an optimal feature
estimation and data association problem, which has been the usual paradigm
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for MTT in radar community [1][2]. To obtain good classification results target
tracking has to be accurate. The knowledge of object type can improve the
tracking results. In this paper these two ideas have been combined to get accurate
classification and 3D tracking results. First the issue of efficiently handling splits
and merges in the segmentation of the targets so that tracking can continue
even when targets split and merge and there are large number of targets in
the Field of View (FOV). Second a new target track initialization algorithm is
introduced which ensures accurate and stable initialization of the trackers which
is usually required by many tracking algorithms. The third contribution is a
new co-operative tracking-classifying-tracking algorithm. The results of image
based 2D tracking are used to classify the target into different categories using a
Bayesian network. This allows using a representative 3D model for each category
to compute the 3D tracking results of the targets.

The paper is organized as as follows: Related works and their differences to
our work is discussed in Section 2. In Section 3 target modelling and pattern
matching algorithm which facilitates the use of a dynamic programming (DP)
strategy to efficiently compute the data association of targets in the presence of
multiple splits and merges is discussed. Section 4 briefly discusses Kalman filter
based motion and shape tracking. The new algorithm for automatic initializa-
tion of target tracking is discussed in Section 5. In Section 6 target classification
based on Bayesian network is discussed. Section 7 explains the 3D models of the
different classes and the camera calibration method used to obtain 3D track-
ing results from 2D tracking. Finally results and conclusions are presented in
Sections 8 and 9.

2 Related Work

Paragios and Deriche [3] considered the problem of simultaneously tracking sev-
eral non-rigid targets. The motion parameters of the targets were estimated using
a coupled front propagation model, which integrates boundary and region-based
information. McKenna et al.’s [4] work on tracking groups of people performs
tracking at three levels of abstraction: regions, people, and groups. People are
tracked through mutual occlusions as they form groups and separate from one
another. Strong use of color information is made to disambiguate occlusion and
to provide qualitative estimates of depth ordering and position during occlu-
sion. Javed and Shah [5] presented an automated surveillance system where the
objects were tracked and classified into different categories with a new feature,
“Recurrent Motion Image”(RMI). The tracking discussed in [5] is based on region
correspondence matching which may fail when there are large number of similar
targets undergoing merges and splits. Haritaoglu et al. [6][7] proposed a system
that combines shape analysis and statistical techniques to track people and their
parts in an outdoor environment. To handle interactions amongst the tracked
people, they used a generic human model tuned to each target’s specific details
to resolve the ambiguities. To track objects in 2 1

2D they used stereo camera.
In our approach 3D tracking results have been obtained using a single camera.
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Medioni et.al. [8] proposed an approach similar to Reid’s Multiple Hypothesis
Tracking (MHT) [9][10]. They use attributed graph matching for creating new
target tracks and tracking them. This approach is more advanced than MHT as
it can handle cases where a target gives rise to multiple measurements because
of splitting. The solution for MTT proposed in this paper can simultaneously
handle both splitting and merging of targets in colored images. Tao et al. in [11]
proposed dynamic motion layer based approach for tracking persons and vehi-
cles in image sequences. Initialization of the tracker relies on blob detection. The
system runs at 5 Hz for four moving objects in the scene. They show tracking
results for 4 to 5 objects in the FOV. We show tracking results for 10-17 targets
in the FOV at 25 Hz.

3 Feature Extraction and Pattern Matching

We use our active background modelling and foreground segmentation scheme
to segment moving foreground objects in the Field of View (FOV) [12]. Another
foreground segmentation technique which can be used is [13]. The foreground
regions are enclosed within their convex hulls to remove concavities. If there are
small connected regions lying within the convex hull of a larger connected region
then the smaller regions are ignored and only the larger region is considered. The
convex hulls are approximated by an ellipse using the algorithm given in [14].
The measurements obtained for each foreground region in a frame is called a
Segmented Patch (SP ) and its features are:

1. Centroid of the ellipse, Xc.
2. J angularly equidistant control points X1, X2, ..., XJ on the ellipse.
3. The normalized, I bin histograms of the Y, Cr, Cb channels of the SP ,

H1, H2, ..., HI.

The oth SP of a frame is represented as:

Co = co
Xc, c

o
X1, c

o
X2, ..., c

o
XJ , co

H1, c
o
H2, ..., c

o
HI . (1)

The targets being tracked by the Kalman filter have same representation as the
measurements with some extra features like velocity of the centroid bn

V c and a
parameter to measure change of shape bn

s . The nth target and its features are
represented as:

Bn = bn
Xc, b

n
X1, b

n
X2, ..., b

n
XJ , bn

H1, b
n
H2, ..., b

n
HI , b

n
V c, b

n
s (2)

3.1 Match Measures

Three match measures DS , DX and DH are discussed here for matching targets
with SPs based on shape and color information. The control points of the nth

target Bn are bn
X1, b

n
X2, ..., b

n
XJ . These control points form polygon PolyBn and

enclose area ABn . Similarly, the control points of the oth SP , CO form poly-
gon PolyCo and enclose area ACo . (ABn

⋂
ACo) is the common area between



Co-operative Multi-target Tracking and Classification 379

the polygons PolyBn and PolyCo . The match measures DS and DX used for
matching shape of SP Co with target Bn are defined as:

DS(Co, Bn) �
∑J

j=1 ds(co
Xj , PolyBn)2

{ABn + ACo} (3)

ds(co
Xj , PolyBn) � Shortest distance of co

Xj from polygon PolyBn .

The sum of area term in the denominator is to normalize the match measure
with respect to area of the patterns.

DX(Co, Bn) �
∑J

j=1 dx(co
Xj , PolyBn)2

{ABn + ACo} × �
(4)

dx �
{

0 If co
Xj is within polygon PolyBn otherwise

shortest distance of co
Xj from the polygon PolyBn .

� �
{

0 If ABn

⋂
ACo = 0.

1 If ABn

⋂
ACo > 0.

The computation of ds and dx is explained in Figure 1. DS is a simple shape
matching measure mentioned here for the purpose of comparing the matching
results with the new match measure DX . Some of the properties of DX are:

1. Non-negative: DX(Co, Bn) ≥ 0. 2. Non-symmetric: DX(Co, Bn) �= DX(Bn, Co).
3. If DX(A, B) = 0 & DX(B, C) = 0 4. But DX(A, C) = 0 & DX(B, C) = 0

=> DX(A, C) = 0. �=> DX(A, B) = 0.

Fig. 1. This figure explains the computation of distance dx and ds of a control point
on PolyCo with PolyBn .

A SP , Co is a match with target Bn when the match measure DX(Co, Bn)
is equal to zero. This happens when Co is spatially coincident with target Bn

or Co lies entirely within Bn. However, in practice a Co would be considered
a match with Bn when DX(Co, Bn) is smaller than a threshold, which is not
critical. The presence of � term in the denominator of (4) ensures that the two
contours of Co and Bn match only when there is overlap between them.
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The match measure DH is defined as

DH(Co, Bn) �
I∑

i=1

|co
Hi − bn

Hi| (5)

for matching two patterns based on intensity and color information. Each bin
Hi has three sub-bins corresponding to Y, Cr, and Cb channels and |co

Hi − bn
Hi|

is the sum of the absolute differences of the sub-bins in bin Hi.

3.2 Pattern Matching

Here we consider matching targets with their SP when there is merg-
ing and splitting. Let the set of targets being tracked be represented by
B1, B2, . . . , Bn, . . . , BN . A frame consist of several SPs, which are
C1, C2, . . . , Co, . . . , CO. A SP Co can be from: 1. single target, 2. multiple
targets merging together, 3. part of a target, which has split into multiple SPs,
and 4. part of a target which has simultaneously merged with other targets and
undergone split to give the SP . We focus on solving data association in cases 2
and 3 optimally and 4 is solved sub-optimally.

The merging of two or more targets is expressed with operator ⊕, i.e. B1 ⊕
B2 ⊕ B3 ⊕ B4 denotes the merging of the 4 targets B1, B2, B3, and B4. The
synthesized-pattern B formed by merging targets B1, B2, B3, and B4 will have a
new convex hull. This convex hull of B is obtained from the points on the convex
hull of B1, B2, B3, and B4. Given N targets, the total number of different ways
in which a new synthesized-pattern can be formed is 2N − 1. For example, for
N = 4 the different possibilities for B are {B1, B2, B3, B4, B1⊕B2, B1⊕B3, B1⊕
B4, B2 ⊕B3, B2 ⊕B4, B3 ⊕B4, B1 ⊕B2 ⊕B3, B1 ⊕B2 ⊕B4, B1 ⊕B3 ⊕B4, B2 ⊕
B3 ⊕ B4, B1 ⊕ B2 ⊕ B3 ⊕ B4}. Notationally any possible synthesized-pattern B
formed from merges can be written as

B = Bn(1) ⊕ Bn(2) ⊕ . . . ⊕ Bn(p) ⊕ . . . ⊕ Bn(P ). (6)

Where P of the available targets have merged and n(p) denotes the index of the
targets used in synthesis of B. For each B the match measure DS(B, Co) can be
computed to find the best match such that

P̂ , n̂(p) = arg min
P,n(1),... ,n(p)

[DS(B, Co)]. (7)

This formulation considers all the possible merges of targets and the one which
gives minimum match measure is finally chosen, thus giving an optimal solution.
However, the minimization problem expressed in (7) is computationally pro-
hibitive to solve in real time. The order of computation to find optimal match
when targets merge is O((2N − 1) × O). For N = 12 to 17 this would be quite a
large number.

The optimal solution to the problem of splitting can be addressed by merging
the SPs, Co in all possible combinations and computing their match measure
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with the different targets. The new synthesized pattern formed by merging dif-
ferent SPs is C = Co(1) ⊕ Co(2) ⊕ . . . ⊕ Co(p) ⊕ . . . ⊕ Co(P ). The problem is to
compute all possible C by changing P , the number of SP and o(p) the indexes
of SP . Thus the problem can be optimally solved as in the case of merges with
a computational complexity of O((2O − 1) × N). Some times the total number
of SP can be quite large due to the presence of clutter, which would make 2O

a very large number. The total complexity to handle both splits and merges
is O((2N − 1) × O) + O((2O − 1) × N). Next we show how by using the new
match measure DX and dynamic programming the same problem can be solved
in O(N × O).

3.3 Dynamic Programming Strategy for Efficient Pattern Matching

Dynamic Programming (DP) is a powerful nonlinear optimization technique,
and is used here to solve the pattern matching problem by optimizing a function
which evaluates the match between targets and SPs. The use of DP in solving a
problem requires that the problem be divided into sub-problems and optimal so-
lution of these sub-problems can be combined together to obtain optimal solution
for the main problem. The properties of the distance function DX facilitates the
use of the DP strategy. In Figure 2 four targets Bn(1), Bn(2), Bn(3), and Bn(4)

at time instance k are being tracked with a Kalman filter based tracker. The
predictions for their shape and position are available for the next frame k + 1
and are denoted as, B̂n(1), B̂n(2), B̂n(3), and B̂n(4). These targets merge to give

Fig. 2. This figure explains the pattern matching principle which enables use of
dynamic programming strategy to speed up computations. A synthesized pattern
B = B̂n(1) ⊕ B̂n(2) ⊕ B̂n(3) ⊕ B̂n(4) is a match with SP Co by the distance measure
DX when B̂n(1), B̂n(2), B̂n(3), and B̂n(4) all match with Co separately.
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rise to a new synthesized pattern B in frame k + 1. If a SP Co is due to the
merger of these four targets in frame k + 1 then B will coincide with Co and
hence DX(B, Co) will be equal to zero. Now if DX of B̂n(1), B̂n(2), B̂n(3), and
B̂n(4) is computed with Co separately then each one of them will be equal to
zero. Because all the control points of these targets lie within the polygon formed
by the control points of B which is a match with Co. Therefore the problem of
pattern matching when targets undergo merge to form a new synthesized pat-
tern B is sub-divided to the problem of finding all targets which match SP ,
Co separately by the match measure DX . If the predictions of all the targets
Bn(1), Bn(2), . . . , Bn(P ) match with Co separately then B formed by merging
these targets is optimal match for Co.

When the targets undergo splitting to give rise to more SPs then the targets
in the scene then the same DP strategy as above can be applied by reversing the
roles of Bn and Co.

4 Kalman Filter Based Tracking

The system uses two Kalman filters to track each target. Theoretically our sys-
tem can be classified as a multiple model system [15]. The motion an position of
a target is tracked by tracking the centroid of the ellipse modelling the target.
Assuming that video rate sampling of 25 frame/sec is fast enough we model the
motion of the targets with a constant velocity model. The shape of the target
is tracked by tracking the J control points representing the shape of the target.
The motion of these control point are approximated by affine motion model,
which has been widely used in computer vision for segmentation and tracking
[16][17]. The change of shape of the targets as they move away or towards the
camera is accounted by the parameter bn

s of the nth target. The details of the
Kalman filter equations and their derivation can be obtained from [18].

From the discussion in Section 3 it can said that there are three types of
matches possible. Each of these and their different methods for updating the
filter parameters are:

1. The targets which have not under gone merge or splits, match their corre-
sponding SP with match measures DH and DX . The motion, position, and
shape attributes of these targets are updated by the Kalman Filter estimates.

2. For matches where a target has split into multiple SPs the shape feature of
the target is updated by Kalman Filter predictions but position and motion
are updated by Kalman Filter estimates. In the latter case the new measure-
ment of the centroid is the mean of all centroids of the different SPs, which
match the target.

3. The shape, position and motion features of targets, which have merged or
have undergone simultaneous merges and splits are updated by their Kalman
Filter predictions for all attributes motion, position, and shape.

The result of tracking as a co-operative effort between pattern matching and
Kalman filter based tracking are shown on a test image sequence in Figure 3.
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j

1.a 1.b 1.c

2.a 2.b 2.c

Fig. 3. Images 1.a,b,c,show the segmentation results for eight targets in the FOV and
images 2.a,b,c show the tracking results. Images 1.b and 2.b show a case where four
targets were merged into one SP . Here each of the eight targets were properly tracked
even as they underwent multiple merges and splits. Please note here that all the targets
are similarly colored so a correspondence based tracking is likely to fail.

These images show the algorithm’s ability to handle multiple merges. The video
was made by overlaying artificial targets on a real video. In spite of many in-
stances of merges the targets position and shape have been quite accurately
tracked.

5 Track Initialization

Accurate initialization of the position, motion, and shape parameters of a target
is an important step, which must be accomplished in the presence of clutter.
There are two types of track initializations that needs to be handled: 1. the
initial bootstrapping and 2. when the tracking is in progress.

Attributed graphs are very useful for initializing Multi-Target Tracking
(MTT) systems as it provides a technique for incorporating both spatial and
temporal information of the targets in decision making. Graphs for target track
initialization and tracking have been used in [19] and [8], respectively. Our system
initializes a new target for tracking only when a target’s reliable measurements
are available in the past τ frames. This property makes the initialization accurate
and the tracker stable.

Automatic initialization of target tracks is done by using an attributed graph
of the SPs in τ frames, as shown in Figure 4. The attributes of each node in the
graph are: 1. the frame number, 2. the centroid, 4. shape parameters, 5. color
histogram of the SP , 6. parent id and child id. Edges are present between nodes
whose frame number differ by 1 as shown in Figure 4. The weights of these
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Fig. 4. This figure shows the structure of the attributed graph used for initialization
of tracking.

edges is the weighted sum of match measures DH and DS between the nodes.
The nodes with frame number 1 are considered as source nodes and nodes with
frame number τ are considered as destination nodes. For all source nodes the
shortest path to all destination nodes are computed using Dijkstra’s algorithm.
Amongst these shortest paths different paths have different sum-of-weights. Of
these paths the path with smallest sum-of-weights is chosen and is called the
path of least sum-of-weights. This path is considered a valid target track. The
nodes of this path is removed from the graph giving rise to a new graph with
reduced number of nodes and edges. The same process is repeated for the new
graph until there is no node from any one of the τ frames in the graph or the path
of least sum-of-weights amongst the computed shortest paths at any iteration is
greater than a heuristic threshold.

Another problem is initialization of tracking for new targets, which enter the
FOV or appear in the FOV due to resolution of occlusion, when tracking of
other targets are in progress. To solve this problem an attributed graph of SPs
which have no match with the targets being tracked is maintained. The path
of least sum-of-weights amongst all the shortest paths from the source nodes to
the destination nodes is computed as described earlier. The source nodes are
from the first layer formed by the unmatched SPs in frame (k − τ + 1), where k
is the current frame number. The destination nodes are the unmatched SPs of
frame k. A new target is confirmed by appearance of least sum-of-weights path
amongst all the shortest path possible from the source nodes to the destination
nodes. All the nodes of this path are removed from the attributed graph.

6 Bayesian Network Based Classifier

Bayesian network classifiers provide a probabilistic framework, which allow the
power of statistical inference and learning to be combined with the temporal
and contextual knowledge of the problem [20]. We have used Bayesian network
for classification of targets in image sequences from a stationary camera. The



Co-operative Multi-target Tracking and Classification 385

Fig. 5. (a) Bayesian Network structure used for target classification and (b) the clas-
sification results obtained from this classifier.

different classes of targets considered are pedestrians, motorcycles, cars/vans,
trucks/buses, heavy trucks, and clutter. In general it is difficult to model a
deterministic relationship between the size, shape, position, and motion features
to the object class due to perspective effects. For example a car close to the
camera may be of the same size as a truck far from the camera; similarly a
pedestrian passing close to the camera may show motion in image space which
is similar to the motion of a fast moving car far from the camera. Furthermore
there are internal dependencies amongst the features. For example, the speed and
size of an object is dependent upon its position. Thus, to establish a relationship
between the various image features of a target and its type, and to model the
conditional dependencies amongst the features we use a Bayesian Network based
classifier. The use of motion and position parameters of a target from tracking
module makes the classification more robust. For example the size and shape
of a moving motorcycle and a pedestrian may be similar but their motion and
position are usually different.

Figure 5(a) shows the proposed Bayesian Network model. Each node is a
variable and the object node is the root node. The seven measurement nodes
are X, Y (the x, y co-ordinates of the target in image space), Vx, Vy (the x, y
components of the target velocity in image space), A, B, the major and minor
axis of the ellipse modelling the target’s shape and A/B the aspect ratio of the
ellipse. Figure 5(b) shows the classification results from several image sequences.
In each of these case the ground truth was manually obtained.

7 Camera Calibration and 3D Tracking

To convert the tracking results in image co-ordinate space to world co-ordinate
space we need to know the perspective transformation matrix P . We use the
technique similar to that of [21] to compute P . The XY plane of the world co-
ordinate system is aligned with the ground plane of the scene and the Z axis
is perpendicular to the ground plane. The image co-ordinates are related to the
world co-ordinate as follows:
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
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
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Yw

Zw

1





 (8)

From (8) it can be easily shown that if the height of a point Zw in the world
co-ordinates is known along with its image co-ordinates, then the corresponding
world co-ordinate location Xw, Yw of the point can be obtained as:

Xw =
(p12 − p32xi)(p23 − p33yi) + (p13 − p33yi)(p32yi − p22)
(p32yi − p22)(p31xi − p11) − (p12 − p32xi)(p21 − p31yi)

Zw (9)

+
(p12 − p32xi)(p24 − p34yi) + (p24 − p34yi)(p32yi − p22)
(p32yi − p22)(p31xi − p11) − (p12 − p32xi)(p21 − p31yi)

Yw =
(p21 − p31yi)Xw

(p32yi − p22)
+

(p23 − p33yi)Zw

(p32yi − p22)
+

(p24 − p34yi)
(p32yi − p22)

(10)

After the targets are classified, a model height of targets in different categories as
shown in Table 1 is used to estimate the 3D position and motion of the targets.
The model heights are a rough guides to the height of a 3D point on top of the
target. In simulations it was found that an error of ±0.5 meters in the height
estimate translates to about ±10% error in speed estimate. To get an accurate
estimate of the world speed of a target, a point which is on top of the target is
selected using heuristics based on the camera view.

Table 1. Model height values for the different classes of targets obtained by averaging
the different heights of objects in a class.

Pedestrian Motorcycles Cars/Vans Trucks/Buses Heavy Truck/Double-Decker

1.7m 1.5m 1.7m 3.0m 4.0m

8 Results

We show the results of tracking for both articulated and non-articulated objects.
In all the results the green ellipses are used to show the measurements obtained
in every frame. The targets and their tracks are shown with same color, which is
different for different targets as far as possible. In Figure 6 we show the robust
tracking results for a real traffic scene and one of the image sequence of PETS
data set. Complete tracking video for traffic scene can be seen in ‘video.avi’ in
the supplementary files. Here simultaneous tracking of upto 17 targets can be
seen. There are instances here when the targets were completely occluded, a
target splitted in to more than one SPs and some targets merged to give one
SP and there were lot of clutter. In all these cases tracking continued without
errors and there was no wrong initialization.
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(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

Fig. 6. Images 1.a,b,c show the tracking results for a traffic scene. (a) shows a case
where the 2nd target from bottom left split into two measurements, (b) shows a frame
where 17 targets are being tracked simultaneously, and (c) shows a case where four
vehicles merged into one measurement. Images 2. a,b,c shows the tracking results on
an image sequence from PETS2001 data set. Image 2.b shows a case where an instance
of simultaneous merging and splitting has been handled properly.

(a) (b)

Fig. 7. Image (a) shows 2D tracking results of a frame in a test image sequence. The
vans in the center of image (a) was moving with a constant speed of 65 km/hour as read
from its speedometer. Plot (b) shows the computed speed of the vehicle for different
height estimates denoted by the parameter ‘h’ and expressed in meters.

Figure 7 shows the results of 3D tracking algorithm proposed in the paper.
Figure 7(a) shows the 2D tracking results and 7(b) shows the plot of the com-
puted speed of the black van, being tracked in the center of the image 7(a), at
different estimates of height. When the estimated height of the vehicle is taken
to be zero then there is significant error in the speed estimates. The speed esti-
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mates are in the range of 80-92 km/hour when the actual speed is 65km/hour as
read from the speedometer of the vehicle. The speed estimates for other values
of height, such as 1.5 meters, 2 meters, and 2.5 meters are close to the actual
speed of 65km/hour. The actual height of the van is 2 meters. This accurate
estimation of the speed of the target allows for detecting a vehicle’s acceleration
as well.

9 Conclusions

We have addressed several problems for robust and reliable tracking and and
classification of multiple targets in image sequences from a stationary camera. A
new efficient algorithm based on DP strategy for pattern matching was proposed,
which can handle data association during complex splitting and merging of the
targets. When this technique is combined with Kalman filter based tracking, it
is possible to preserve the labels of the targets even when they cross each other,
or get completely or partially occluded by background or foreground objects. An
attributed graph based technique was proposed to initialize the tracks. Using a
Bayesian network based classification and a simple camera calibration we have
obtained accurate 3D tracking results for vehicles. Results have been shown
where the tracker can handle up to 17 targets simultaneously. At present this
system is being used to detect potential accident behavior between pedestrians
and vehicles in traffic videos.
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