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Abstract. This paper focuses on how to perform the unsupervised clus-
tering of tree structures in an information theoretic setting. We pose the
problem of clustering as that of locating a series of archetypes that can
be used to represent the variations in tree structure present in the train-
ing sample. The archetypes are tree-unions that are formed by merging
sets of sample trees, and are attributed with probabilities that measure
the node frequency or weight in the training sample. The approach is de-
signed to operate when the correspondences between nodes are unknown
and must be inferred as part of the learning process. We show how the
tree merging process can be posed as the minimisation of an information
theoretic minimum descriptor length criterion. We illustrate the utility
of the resulting algorithm on the problem of classifying 2D shapes using
a shock graph representation.

1 Introduction

Graph-based representations have been used with considerable success in com-
puter vision in the abstraction and recognition of object shape and scene struc-
ture. Concrete examples include the use of shock graphs to represent shape-
skeletons [10,15], the use of trees to represent articulated objects [8,19] and the
use of aspect graphs for 3D object representation [2]. The attractive feature of
structural representations is that they concisely capture the relational arrange-
ment of object primitives, in a manner which can be invariant to changes in
object viewpoint. However, despite the many advantages and attractive features
of graph representations, the methodology available for learning structural rep-
resentations from sets of training examples is relatively limited. As a result, the
process of constructing shape-spaces which capture the modes of structural vari-
ation for sets of graphs has proved to be elusive. Hence, geometric representations
of shape such as point distribution models [6], have proved to be more amenable
when variable sets of shapes must be analyzed. There are two reasons why pat-
tern spaces are more easily constructed for curves and surfaces than for graphs.
First, there is no canonical ordering for the nodes or edges of a graph. Hence,
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before a vector-space can be constructed, then correspondences between nodes
must be established. Second, structural variations in graphs manifest themselves
as differences in the numbers of nodes and edges. As a result, even if a vector
mapping can be established then the vectors will be of variable length.

One way of circumventing this problem is to embed the graphs in a low dimen-
sional space using the distances between graphs or by using simple graph features
that do not require correspondence analysis. For instance, Cyr and Kimia have
used a geometric procedure to embed graphs on a view-sphere [1]. Demerici and
Dickinson [9] have shown how the minimum distortion embedding procedure
of Linial, London and Rabinovich [11] can be used for the purposes of corre-
spondence matching. A recent review of methods that could be used to perform
the embedding process is provided in the paper of Hjaltason and Samet [7].
However, although this work provides a means of capturing the distribution of
graphs and can be used for clustering, it does not provide an embedding which
allows a generative model of detailed graph structure to be learned. In other
words, the distribution does not capture in an explicit manner the variations in
the graphs in terms of changes in node and edge structure. Recently, though,
there has been considerable interest in learning structural representations from
samples of training data, in particular in the context of Bayesian networks [5,3],
mixtures of tree-classifiers [12], or general relational models [4]. Unfortunately,
these methods require the availability of node correspondences as a prerequisite.

The aim in this paper is to develop an information theoretic framework for
the unsupervised learning of generative models of tree-structures from sets of
examples. We pose the problem as that of learning a mixture of union trees.
Each tree union is an archetype that represents a class of trees. Those trees that
belong to a particular class can be obtained from the relevant tree archetype by
node removal operations. Hence, the union-tree can be formed using a sequence
of tree merge operations. We work under conditions in which the node corre-
spondences required to perform merges are unknown and must be located by
minimising tree edit distance. Associated with each node of the union structure
is a probability. This is a random variable which represents the frequency of
the node in the training sample. Since every tree in the sample can be obtained
from one of the union structures in the mixture, the tree archetypes are genera-
tive models. There are three quantities that must be estimated to construct this
generative model. The first of these are the correspondences between the nodes
in the training examples and the estimated union structure. Secondly, there is
the union structure itself. Finally, there are the node probabilities. We cast the
estimation of these three quantities in an information theoretic setting using
the description length for the union structure and its associated node proba-
bilities given correspondences with the set of training examples [13]. With the
tree-unions to hand, then we can apply use PCA to project the trees into a low
dimensional vector space.
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2 Generative Tree Model

Consider the set or sample of trees D = {t1, t2, . . . , tn}. Our aim in this paper is
to cluster these trees, i.e. to perform unsupervised learning of the class structure
of the sample. We pose this problem as that of learning a mixture of generative
class archetypes. Each class archetype is constructed by merging sets of sample
trees together to form a set of union structures. This merge process requires
node correspondence information, and we work under conditions in which these
are unknown and must be inferred as part of the learning process. Each tree
in the sample can hence be obtained from one of the union-structures using a
sequence of node removal operations. Thus the class archetypes are generative
models since they capture in an explicit manner the structural variations for the
sample trees belonging to a particular class in a probabilistic manner.

Suppose that the set of class archetypes constituting the mixture model is
denoted by H = {T1, T2, . . . , Tk}. For the class c, the tree model Tc is a struc-
tural archetype derived from the tree-union obtained by merging the set of trees
Dc ⊆ D constituting the class. Associated with the archetype is a probability dis-
tribution which captures the variations in tree structure within the class. Hence,
the learning process involves estimating the union structure and the parameters
of the associated probability distribution for the class model Tc. As a prerequi-
site, we require the set of node correspondences C between sample trees and the
union tree for each class.

Our aim is to cast the learning process into an information theoretic setting.
The estimation of the required class models is effected using a simple greedy
optimization method. The quantity to be optimized is the descriptor length for
the sample data-set D. The parameters to be optimized include the structural
archetype of the model T as well as the node correspondences C between the
samples in the set D and the archetype. Hence, the inter-sample node corre-
spondences are not assumed to be known a priori. Since the correspondences
are uncertain, we must solve two interdependent optimization problems. These
are the optimization of the union structure given a set of correspondences, and
the optimization of the correspondences given the tree structure. These dual
optimization steps are approximated by greedily merging similar tree-models.

We characterize uncertainties in the structure obtained by tree merge opera-
tions by assigning probabilities to nodes. By adopting an information theoretic
approach we demonstrate that the tree-edit distance, and hence the costs for the
edit operations used to merge trees, are related to the entropies associated with
the node probabilities.

2.1 Probabilistic Framework

More formally, the basis of the proposed structural learning approach is a gener-
ative tree model which allows us to assign a probability distribution to a sample
of hierarchical trees. Each hierarchical tree t is defined by a set of nodes N t, a
tree-order relation Ot ⊂ N t×N t between the nodes, and, in the case of weighted
trees, a weight set W t = {wt

i |i ∈ N t} where wt
i is the weight associated with
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node i of tree t. A tree-order relation Ot is an order relation with the added con-
straint that if (x, y) ∈ Ot and (z, y) ∈ Ot, then either (x, z) ∈ Ot or (z, x) ∈ Ot.
A node b is said to be a descendent of a, or a� b, if (a, b) ∈ Ot. Furthermore, if
b is a descendent of a then it is also a child of a if there is no node x such that
a� x and x� b, that is there is no node between a and b in the tree-order.

Our aim is to construct a generative model for a class of trees Dc ⊂ D.
The structural component of this model Tc consists of a set of nodes Nc and
an associated tree order relation Oc ⊂ Nc × Nc. Additionally, there is a set
Θc = {θc

i , i ∈ Nc} of sampling probabilities θc
i for each node i ∈ Nc. Hence the

model is the triple Tc = (Nc,Oc, Θc). A sample from this model is a hierarchical
tree t = (N t,Ot) with node set N t ⊂ Nc and a node hierarchy Ot that is the
restriction to N t of Oc. In other words, the sample tree is just a subtree of the
class archetype, which can be obtained using a simple set of edit operations that
prune the archetype.

The develop our generative model we make a number of simplifying assump-
tions. First, we drop the class index c to simplify notation. Second, we assume
that the set of nodes for the union structure T spans each of the encountered
sample trees D, i.e. N =

⋃
t∈D N t. Third, we assume that the sampling error

acts only on nodes, while the hierarchical relations are always sampled correctly.
That is, if nodes i and j satisfy the relation iOj, then node i will be an ancestor
of node j in each tree-sample that has both nodes.

Our assumptions imply that two nodes will always satisfy the same hierar-
chical relation whenever they are both present in a sample tree. A consequence
of this assumption is that the structure of a sample tree is completely deter-
mined by restricting the order relation of the model O to the nodes observed
in the sample tree. Hence, the links in the sampled tree can be viewed as the
minimal representation of the order relation between the nodes. The sampling
process is equivalent to the application of a set of node removal operations to
the archetypical structure T = (N ,O, Θ), which makes the archetype a union
of the set of all possible tree samples.

To define a probability distribution over the union structure T , we require
the correspondences between the nodes in each sample tree t and the nodes
in the class-model T . We hence define a map C : N t → N from the set N t

of the nodes of t, to the nodes of the class model T . The mapping induces a
sample-correspondence for each node i ∈ N . When the nodes of the sample
trees have weights associated with them, then we would expect the sampling
likelihood to reflect the distribution of weights. Hence, the simple probability
distribution described above, which is based on uniform sample node probability,
is not sufficient because it does not take into account the weight distribution.To
overcome this shortcoming, in addition to the set of sampling probabilities Θ, we
associate with the union model a weight distribution function. Here we assume
that the weight distribution is a rectified Gaussian. For the node i of the union
tree the weight probability distribution is given by

p(wj |C(j) = i)

{
1

θiσi

√
2π

exp
(
− 1

2
(wj−µi)2

σi
2

)
if wj ≥ 0

0 otherwise



Learning Mixtures of Weighted Tree-Unions 17

where the weight distribution has mode µi and standard deviation σi. The sam-
pling probability is the integral of the distribution over positive weights, i.e.

θi =
∫ ∞

0

exp
(
− 1

2
(w−µi)2

σi
2

)

σi

√
2π

dw = 1 − erfc(τi), (1)

where τi = µi/σi and erfc is the complementary error function. Taking into
account the correspondences, the probability for node i induced by the mapping
is

φ(i|t, T , C) =

{
θip(wj |C(j) = i) if there existsj ∈ N tsuch thatC(j) = i

1 − θi otherwise.

2.2 Estimating Node Parameters

We can compute the log-likelihood of the sample data D given the tree-union
model T and the correspondence mapping function C. Under the assumption
that the sampling process acts independently on the nodes of the structure the
log-likelihood is

L(D|T , C) =
∑

t∈D

∑

i∈N t

ln [φ(i|t, T , C)]

Our ultimate aim is to optimize the log-likelihood with respect to the corre-
spondence map C and the tree union model T . These variables, though, are not
independent since they both depend on the node-set N . A variation in the ac-
tual identity and number of the nodes does not change the log-likelihood. Hence
the dependency on the node-set can be lifted by simply assuming that the node
set is the image of the correspondence map i.e. Im(C). As we will see later,
the reason for this is that those nodes that remain unmapped do not affect the
maximization process.

We defer details of how we estimate the correspondence map C and the order
relation O to later sections of the paper. However, assuming estimates of them
are to hand, then we can make maximum likelihood estimates of the selected
node model. That is, the set of sampling probabilities Θ in the unweighted case,
and the node parameters τ̄ and σ̄ in the weighted case.

To proceed, let Ki = {j ∈ N t|t ∈ D, C(j) = i} be the set of nodes in the
different trees for which C maps a node to i and let pi = |Ki| be the number of
trees satisfying this condition. Further, let ni be the number of trees in D for
which C results in no mapping to the node i. Using the weighted node model, the
log-likelihood function can be expressed as the sum of per-node log-likelihood
functions

L(D|T , C) =
∑

i∈N
log

(

erfc(τi)ni(2πσi)− pi
2 exp



−1
2

∑

j∈Ki

(
wt

j

σi
− τi

)2




)

. (2)
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To estimate the parameters of the weight distribution, we take the derivatives
of the log-likelihood function with respect to σi and τi and set them to zero.
When ni > 0, we maximize the log likelihood by setting τi

0 = erfc−1
(

ni

ni+pi

)
,

and iterating the recurrence:

σi
(k) = −τi

(k)

2
W +

√
(

τi
(k)

2
W

)2

+ W 2 τi
(k+1) = τi

(k) − f(τi
(k), σi

(k))
d

dτi
(k) f(τi

(k), σi
(k))
(3)

where W =
∑

j∈Ki
wt

j , W 2 =
∑

j∈Ki

(
wt

j

)2, and f(τi, σi) = ni erfc′(τi) +

pi erfc(τi)
(

W
σi

− τi

)
.

3 Mixture Model

We now commence our discussion of how to estimate the order relation O for the
tree union T , and the set of correspondences C needed to merge the sample trees
to form the tree-union. We pose the problem as that of fitting a mixture of tree
unions to the set of sample trees. Each tree-union may be used to represent a
distribution of trees that belong to a single class Dc. The defining characteristic
of the class is the fact that the nodes present in the sample trees satisfy a
single order relation Oc. However, the sample set D may have a more complex
class structure and it may be necessary to describe it using multiple tree unions.
Under these conditions the unsupervised learning process must allow for multiple
classes. We represent the distribution of sample trees using a mixture model over
separate union structures. Suppose that there are k tree-unions and that the tree
union for the class c is denoted by Tc, and that the mixing proportion for this
tree-union is αc. The mixture model for the distribution of sample trees is

P (t|T̄ , C) =
k∑

c=1

αc

∏

t∈D

∏

i∈N t

φ(i|t, Tc, C).

The expected log-likelihood function for the mixture model over the sample-
set D is:

L(D|T̄ , C, z̄) =
∑

t∈D

∑

i∈N t

k∑

c=1

zt
cαc lnφ(i|t, Tc, C),

where zt
c is an indicator variable, that takes on the value 1 if tree t belongs to

the mixture component c, and is zero otherwise.
We hence require an information criterion that can be used to select the set of

tree merge operations over the sample set D that results in the optimal set of tree-
unions. It is well known that the maximum likelihood criterion cannot be directly
used to estimate the number of mixture components, since the maximum of the
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likelihood function is a monotonic function on the number of components. In
order to overcome this problem we use the Minimum Description Length (MDL)
principle [13], which asserts that the model that best describes a set of data is
that which minimizes the combined cost of encoding the model, and, the error
between the model and the data. The MDL principle allows us to select from a
family of possibilities the most parsimonious model that best approximates the
underlying data.

More formally, the expected descriptor length of a data set D generated by
an estimate H of the true or underlying model H∗ is

E [LL(D,H)] = −
∫

P (D|H∗) log [P (D|H)P (H)] dD =

− 1
P (H∗)

∫

P (D,H∗) log [P (D,H)] dD =

− 1
P (H∗)

[∫

P (D,H∗) log (P (D,H∗)) dD+
∫

P (D,H∗) log
(

P (D,H)
P (D,H∗)

)

dD
]

=

1
P (H∗)

[I(P (D,H∗)) + KL(P (D,H∗), P (D,H))] , (4)

where

I(P (D,H∗)) = −
∫

P (D,H∗) log (P (D,H∗)) dD

is the entropy of the joint probability of the data and the underlying model H∗,
and

KL(P (D,H∗), P (D,H)) = −
∫

P (D,H∗) log
(

P (D,H)
P (D,H∗)

)

dD

is the Kullback-Leiber divergence between the joint probabilities using the un-
derlying model H∗ and the estimated model H. This quantity is minimized when
H = H∗, and hence P (D,H) = P (D,H∗).

Under these conditions KL(P (D,H∗), P (D,H)) = 0 and E[LL(D,H)] =
I(P (D,H)). In other words, the description length associated with the maxi-
mum likelihood set of parameters is just the expected value of the negative log
likelihood, i.e. the Shannon entropy.

As noted above, the cost incurred in describing or encoding the model T̄
is − log

[
P (T̄ )

]
, while the cost of describing the data D using that model is

− log
[
P (D|T̄ )

]
. Making the dependence on the correspondences C explicit, we

have that the description length is LL(D|T ) = −L(D|T̄ , C).. Asymptotically
the cost of describing the set of mixing components ᾱ = {αc; c = 1, ..., k} and
the set of indicator variables z̄ = {zt

c|t ∈ D, c = 1, ..., k} is bounded by mI(ᾱ),
where m is the number of samples in D and I(ᾱ) = −

∑k
c=1 αc log(αc) is the

entropy of the mixture distribution ᾱ. We assume that the weight distribution
is encoded as a histogram. Hence, we commence by dividing the weight space
of the samples associated with the node i of the union-tree c into buckets of
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width kσc
i . As a result, the probability that a weight falls in a bucket centered

at x is, for infinitesimally small k bi
c(x) = k

θc
i

√
2π

exp[− 1
2 ( x

σc
i

− τ c
i )2]. Hence, the

asymptotic cost of describing the node parameters τ c
i and σc

i and, at the same
time, describing within the specified precision the nαc samples associated to
node i in union c, is

LLi
c(D|Tc, C) = −(mαc − pi) log(1 − θb

i ) −
pi∑

j=1

log
(
bi
c(w

i
j)
)
.

where θc
i = 1−erfc(τi) is the sampling probability for node i and pi is the number

of times the correspondence C maps a sample-node to i. Hence (mαc − pi) is the
number of times node i has not been sampled according to the correspondence
map C. As a result

LL(D|H, C) = mI(ᾱ) +
k∑

c=1

∑

i∈Nc

[
LLi

c(D|Tc, C) + l
]
. (5)

where l is the description length per node of the tree-union structure, which we
set to 1.

4 Learning the Mixture

With the description length criterion to hand, our aim is to locate tree merges
that give rise to the set of tree unions that optimally partition the training
data D into non-overlapping classes. Unfortunately, locating the global minimum
of the descriptor length in this way is an intractable combinatorial problem.
Moreover, the Expectation-Maximization algorithm may not be used since the
complexity of the maximization step grows exponentially due to the fact that
the membership indicators admit the possibility that each union can potentially
include every sample-tree. Hence, we resort to a local search technique, which
allows us to limit the complexity of the maximization step. The approach is as
follows.

– Commence with an overly-specific model. We use a structural model per
sample-tree, where each model is equiprobable and structurally identical to
the respective sample-tree, and each node has unit sample probability.

– Iteratively generalize the model by merging pairs of tree-unions. The candi-
dates for merging are chosen so that they maximally decrease the descriptor
length.

– The algorithm stops when there are no merges remaining that can decrease
the descriptor length.

The main requirement of our description length minimization algorithm is
that we can optimally merge two tree models. Given two tree models T1 and
T2, we wish to construct a union T̂ whose structure respects the hierarchical
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constraints present in both T1 and T2, and that also minimizes the quantity
LL(T̂ ). Since the trees T1 and T2 already assign node correspondences C1 and
C2 from the data samples to the model, we can simply find a map M from the
nodes in T1 and T2 to T̂ and transitively extend the correspondences from the
samples to the final model T̂ in such a way that, given two nodes v ∈ N1 and
v′ ∈ N2, then Ĉ(v) = Ĉ(v′) ⇔ v′ = M(v).

Posed as the merge of two structures, the correspondence problem is reduced
to that of finding the set of nodes in T1 and T2 that are common to both trees.
Starting with the two structures, we merge the sets of nodes that reduces the
descriptor length by the largest amount, while still satisfying the hierarchical
constraint. That is we merge nodes u and v of T1 with node u′ and v′ of T2
respectively if and only if u� v ⇔ u′ � v′, where a� b indicates that a is an
ancestor of b.

The descriptor length advantage obtained by merging the nodes v and v′ is:

A(v, v′) = LLv(D|Tc, C) + LLv′
(D|Tc, C) − LL(vv′)(D|Tc, C) + l. (6)

The set of merges M that minimizes the descriptor length of the combined
tree-union also maximizes the advantage function

A(M) =
∑

(v,v′)∈M
A(v, v′).

For each pair of initial mixture components we calculate the union and the
descriptor length of the merged structure. From the set of potential merges, we
can identify the one which is both allowable and which reduces the descriptor
cost by the greatest amount. The mixing proportion for this optimal merge
is equal to the sum of the proportions of the individual unions. At this point
we calculate the union and descriptor cost that results from merging the newly
obtained model with each of the remaining components. We iterate the algorithm
until no more merges can be found that reduce the descriptor length.

5 Pattern Spaces from Union Trees

We can uses the union-trees to embed the shapes of the same class in a pattern
space using principal components analysis. To do this we place the nodes of the
union tree Tc in an arbitrary order. To each sample tree t we associate a pattern-
vector xt = (x1, . . . , xn)T ∈ R

n, where n = |Nc| is the number of nodes in the
tree model Tc. Here xt(i) = wT

i if the tree has a node mapped to the i-th node of
the sample and is zero otherwise. For each union-tree Tc we compute the mean
pattern-vector x̂c = 1

|Nc|
∑

t∈Nc
xt and covariance matrix Σc = 1

|Nc|
∑

t∈Nc
(xt−

x̂c)(xt − x̂c)T where Nc is the set of sample trees merged to form the tree
union Tc. Suppose that the eigenvectors (ordered to decreasing eigenvalue) are
e1, e2, ....eNc

. The leading lsig eigenvectors are used to form the columns of the
matrix E = (e1|e2|....|elsig ). We perform PCA on the sample-trees by projecting
the pattern-vectors onto the leading eigenvectors of the covariance matrix. The
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a) Mixture of unattributed
tree models.

b) Weighted edit-distance. c) Union of attributed
trees.

Fig. 1. Clusters extracted with a purely-structural mixture of trees approach versus
pairwise clustering of attributed distances obtained with edit distance and tree union.

projection of the pattern-vector for the sample tree indexed t is yt = ET xt. The
distance between the vectors in this space is DPCA(t, t′)(yt − yt′)T (yt − yt′).

6 Experimental Results

We illustrate the utility of the tree-clustering algorithm on sets of shock trees.
The shock tree is a graph-based representation of the differential structure of the
boundary of a 2D shape. We augment the skeleton topology with a measure of
feature importance based on the rate of change of boundary length with distance
along the skeleton.

6.1 Clustering Examples

To illustrate the clustering process, we commence with a study on a small
database of 25 shapes. In order to asses the quality of the method, we com-
pare the clusters defined by the components of the mixture with those obtained
by applying a graph spectral pairwise clustering method recently developed by
Robles-Kelly and Hancock [14] to the distances between graphs. This method
locates the clusters by iteratively extracting the eigenvectors from the matrix
of edit-distances between the graphs. The edit distances are computed in two
alternative ways. First, we compute weighted edit distance using the method
outlined in [17]. The second method involves computing the distance matrix
using the projected vectors by embedding the trees in a single tree union [18].
These two distance measures are enhanced with geometrical information linked
to the nodes of the trees in the form of a node weight. The weight of each node
is equal to the proportion of the boundary length that generated the skeletal
branch associated to the node.

Figure 1 shows the clusters extracted from the database of 25 shapes. The
first column shows the clusters extracted through the mixture of tree unions
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Fig. 2. Left: 2D multi-dimensional scaling of the pairwise distances of the shock graphs.
(The numbers correspond to the shape classes.); Right: Proportion of correct classifica-
tions obtained with the mixture of tree versus those obtained with pairwise clustering.

approach, and relies on a purely structural representation of shape. The second
column displays the clusters extracted from the weighted edit-distances between
shock-trees; here the structural information is enhanced with geometrical in-
formation. The third column shows the clusters extracted from the distances
obtained by embedding the geometrically-enhanced shock-trees in a single tree-
union. While there is some merge and leakage, the clusters extracted with the
mixture of tree unions compare favorably with those obtained using the alter-
native clustering algorithms, even though these are based on data enhanced
with geometrical information. The second to last cluster extracted using the
mixture of tree unions deserves some further explanation. The structure of the
shock-trees of the distinct tools in the cluster are identical. Hence, by using
only structural information, the method clusters the shock-trees together. To
distinguish between the objects, geometrical information must be provided too.
Hence, the two alternative clustering methods are able to distinguish between
the wrenches, brushes and pliers.

A more challenging experimental vehicle is provided by a larger database of
120 trees, which is divided into 8 shape classes containing 15 shapes each. To
perform an initial evaluation of this database, we have applied multidimensional
scaling to the weighted edit distances between the shock graphs for the different
shapes. By doing this we embed points representing the graphs in a low dimen-
sional space spanned by the eigenvectors of a similarity matrix computed from
the pairwise distances. In Figure 2 we show the projection of the graphs onto
the 2D space spanned by the leading two eigenvectors of the similarity matrix.
Each label in the plot corresponds to a particular shape class. Label 1 identifies
hands, label 2 horses, label 3 ducks, 4 men, 5 pliers, 6 screwdrivers, 7 dogs, and,
finally, label 8 is associated with leaves. The plot clearly shows the difficulty of
this clustering problem. The shape groups are not well separated. Rather, there
is a good deal of overlap between them. Furthermore, there are a considerable
number of outliers.

To asses the ability of the clustering algorithm to separate the shape classes,
we performed experiments on an increasing number of shapes. We commenced
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Fig. 3. Principal components analysis of the union embedding of the clusters.

with the 30 shapes from the first two shape classes, and then increased the
number of shape classes under consideration until the full set of 120 shapes
was included. Figure 2 plots the proportion of shapes correctly classified as the
number of shapes is increased. The solid line plots the result obtained using
the mixture of weighted tree unions, while the dotted line displays the results
obtained with pairwise clustering of the weighted edit distances between the
shapes. The mixture of tree unions clearly outperforms the pairwise clustering
algorithm.

We now turn our attention to the results of applying PCA to the union trees,
as described in Section 5. Figure 3 displays the first two principal components of
the sample-tree distribution for the embedding spaces extracted from six shape
classes. In most cases there appears to be a tightly packed central cluster with
a few shapes scattered further away than the rest. This separation is linked to
substantial variations in the structure of the shock trees. For example, in the
shape-space formed by the class of pliers the outlier is the only pair-of-pliers
with the nose closed. In the case of shape-space for the horse-class, the outliers
appear to be the cart-horses while the inliers are the ponies.

7 Conclusions

In this paper we have presented an information theoretic framework for cluster-
ing trees and for learning a generative model of the variation in tree structure.
The problem is posed as that of learning a mixture of tree unions. We demon-
strate how the three sets of operations needed to learn the generative model,
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namely node correspondence, tree merging and node probability estimation, can
each be couched in terms of minimising a description length criterion. We pro-
vide variants of algorithm that can be applied to samples of both weighted and
unweighted trees. The method is illustrated on the problem of learning shape-
classes from sets of shock trees.
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