Skip to main content

Quality Metrics for 2D Scatterplot Graphics: Automatically Reducing Visual Clutter

  • Conference paper
Smart Graphics (SG 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3031))

Included in the following conference series:

Abstract

The problem of visualizing huge amounts of data is very well known in the field of Computer Graphics. Visualizing large number of items (the order of millions) forces almost any kind of techniques to reveal its limits in terms of expressivity and scalability. To deal with this problem we propose a ”feature preservation” approach, based on the idea of modelling the final visualization in a virtual space in order to analyze its features (e.g, absolute and relative density, clusters, etc.). Through this approach we provide a formal model to measure the visual clutter resulting from the representation of a large dataset on a physical device, obtaining some figures about the visualization decay and devising an automatic sampling strategy able to preserve relative densities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: Proceedings of the CHI conference, pp. 313–317. ACM Press, New York (1994)

    Google Scholar 

  2. Bederson, B.B., Hollan, J.D.: Pad++: a zooming graphical interface for exploring alternate interface physics. In: Proceedings of the UIST ACM symposium, pp. 17–26. ACM Press, New York (1994)

    Google Scholar 

  3. Ellis, G., Dix, A.: Density control through random sampling: an architectural perspective. In: Proceedings of Conference on Information Visualisation, July 2002, pp. 82–90 (2002)

    Google Scholar 

  4. Furnas, G.W.: Generalized fisheye views. In: Proceedings of the CHI conference, pp. 16–23. ACM Press, New York (1986)

    Google Scholar 

  5. Hinneburg, A., Keim, D.A., Wawryniuk, M.: Hd-eye: visual clustering of high dimensional data. In: Proceedings of the 2002 ACM SIGMOD international conference on Management of data, pp. 629–629. ACM Press, New York (2002)

    Chapter  Google Scholar 

  6. Johnson, B., Shneiderman, B.: Tree-maps: A space-filling approach to the visual-ization of hierarchical information structures. In: Proceedings of IEEE Visualization, October 1991, pp. 284–291 (1991)

    Google Scholar 

  7. Keim, D.A.: Designing pixel-oriented visualization techniques: Theory and applications. IEEE Transactions on Visualization and Computer Graphics 6(1), 59–78 (2000)

    Article  Google Scholar 

  8. Lamping, J., Rao, R.: Visualizing large trees using the hyperbolic browser. In: Conference companion on Human factors in computing systems, pp. 388–389. ACM Press, New York (1996)

    Chapter  Google Scholar 

  9. Miller, N., Hetzler, B., Nakamura, G., Whitney, P.: The need for metrics in visual information analysis. In: Proceedings of the 1997 workshop on New paradigms in information visualization and manipulation, pp. 24–28. ACM Press, New York (1997)

    Chapter  Google Scholar 

  10. Richard, B.: Concept demonstration: Metrics for effective information visualization. In: Proceedings For IEEE Symposium On Information Visualization, pp. 108–111. IEEE Service Center, Phoenix (1997)

    Google Scholar 

  11. Sprenger, T.C., Brunella, R., Gross, M.H.: H-blob: a hierarchical visual clustering method using implicit surfaces. In: Proceedings of the conference on Visualization 2000, pp. 61–68. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  12. Tufte, E.R.: The visual display of quantitative information. Graphics Press (1986)

    Google Scholar 

  13. Woodruff, A., Landay, J., Stonebraker, M.: Constant density visualizations of non-uniform distributions of data. In: Proceedings of the 11th annual ACM symposium on User interface software and technology, pp. 19–28. ACM Press, New York (1998)

    Chapter  Google Scholar 

  14. Woodruff, A., Landay, J., Stonebraker, M.: Vida (visual information density adjuster). In: CHI 1999 extended abstracts on Human factors in computing systems, pp. 19–20. ACM Press, New York (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bertini, E., Santucci, G. (2004). Quality Metrics for 2D Scatterplot Graphics: Automatically Reducing Visual Clutter. In: Butz, A., Krüger, A., Olivier, P. (eds) Smart Graphics. SG 2004. Lecture Notes in Computer Science, vol 3031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24678-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24678-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21977-4

  • Online ISBN: 978-3-540-24678-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics