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Abstract. For distributed storage systems the way how the data are replicated
and distributed significantly affects availability, security, and performance.
Here many factors such as the number of nodes and partitions, replications,
node survivability, etc. are interrelated. This paper investigates the availability
of Information Dispersal Scheme that can be used for distributed storage sys-
tem. It will help construct a large distributed system allowing high availability.

1   Introduction

The survivable storage system [1-2] requires to encode and distribute data over multi-
ple storage nodes to survive failures and malicious attacks. It also needs to replicate
data to enhance availability. For distributed storage systems the way how the data are
replicated and distributed significantly affects the availability, security, and perform-
ance.

There exist various data replication and distribution schemes such as replication,
splitting, information dispersal,  and secret sharing [3-8]. The schemes display differ-
ent availability, security, and performance trade-off since many factors such as the
number of nodes, storage space, operation speed, etc. affect each other. Therefore,
finding an optimal scheme for a given condition is very difficult. In this paper we
formally define a data replication and distribution scheme called information disper-
sal scheme (IDS), and investigate the availability of the IDS for deciding an optimal
IDS with a given condition. It will help construct a large distributed system allowing
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high availability. The rest of the paper is organized as follows. Section 2 investigates
the availability of the IDS. We conclude the paper in Section 3.

2   The Availability of IDS

The basic properties of IDS are reported in [9]. This section focuses on the availabil-
ity of IDS. The notations are as follows. The (m, n)-IDS is a data distribution scheme
where m pieces of the original data are replicated into n pieces which are stored in n
nodes respectively.

k(=n/m)            Information Expansion Ratio (IER); k ≥ 1
P                    node survivability; 0 < P < 1

P(m, n)             availability of the (m, n)-IDS
P*((i, j), (m, n))   critical node survivability which allows P(i, j)=P(m, n)

Classi                       all IDS’s whose k is i
(m, n)(i, j)-IDS       boundary IDS of Classn/m; for example, if m > s and n > t, (i, j)-IDS

and (s, t)-IDS of Classn/m do not have a critical node survivability. How-
ever, if m ≤ s and n ≤ t, there exists a critical node survivability.

Availability of (m, n)-IDS is as follows [9-10].
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Some important properties of IDS based on this availability formula are as follows.

Theorem 1: If m and n increase by the same ratio, the availability decreases. Say,

 P(k1m, k1n) > P(k2m, k2n) if k1 < k2 (2)

Proof: (k1m, k1n)-IDS and (k2m, k2n)-IDS have the same IER and belong to the same
class. Then,

P(m, n) > P(m+i, n+j) if k=n/m=(n+j)/(m+i), i, j ≥ 1
 Therefore, P(k1m, k1n) > P(k2m, k2n).          

Theorem  2: For two IDS’s, A and B, if the number of partitions of A is smaller than
that of B while the k value of A is larger, then the availability of A is larger than that
of B. Say,

P(i, j) > P(m, n) if i < m and j/i ≥ n/m (3)

Proof: If j/i = n/m, then this is the following case.
P(m, n) > P(m+i, n+j) if k=n/m=(n+j)/(m+i), i, j ≥ 1

If j/i > n/m, then j > (ni)/m. Since P(m, n) < P(m, n+mi) for i > 1, P(i, j) > P(i,
(ni)/m). P(i, (ni)/m) > P(m, n) due to Theorem 1 since ((ni)/m)/i = n/m. As a result,
P(i, j) > P(m, n).       

Theorem 2 reveals that availability increases if the number of partitions decreases and
the number of replications increases.
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Theorem 3: Given Classa and Classb of different IER values, if a < b, an (m, n)(i, j)-
IDS of Classb always exists, where m > i and n > j. If a > b, an (m, n)(i, j)-IDS exists,
where m < i and n < j.

Proof: In the case of a < b, if m and n are smaller than i and j respectively, for all P
ranges, (m, n)-IDS is more available than (i, j)-IDS by Theorem 2. That is, critical
node survivability does not exists. Note that if l→∞, P(l, bl) →0 by Theorem 1.
Therefore, a boundary IDS, (m, n)(i, j)-IDS exists, where m > i and n > j. Similarly, in
the case of a > b, if m and n are larger than i and j respectively, for all P ranges, (i, j)-
IDS is more available than (m, n)-IDS by Theorem 2. If l→0, P(l, bl) →1 by Theo-
rem 1. Therefore, a boundary IDS, (m, n)(i, j)-IDS  exists, where m < i and n < j.    
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Fig. 1. The availabilities for (1, 4)-IDS and IDS’s of Class3

We know that if (m, n)-IDS and Classa do not have a boundary IDS and the IER of
the (m, n)-IDS is larger than a, the (m, n)-IDS is more available than all IDS’s of
Classa for entire P range. Fig. 1 shows an example of Theorem 3. Generally, the IDS
of (1, 1), (1, 2), (1, 3), ···, (1, n) and the classes that have smaller IER’s than (m, n)-
IDS do not have a boundary IDS.
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Fig. 2. The availabilities for (1, 2)-IDS and the IDS’s of Class4 and the availabilities for (5,
15)-IDS and the IDS’s of Class2
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Theorem 4: Suppose that an (i, j)-IDS of Classa and Classb have (m, n)(i, j)-IDS of
Classb and a < b. If m and n increase, critical node survivability converges to 1. On
the contrary, suppose that an (i, j)-IDS of Classa and Classb have (m, n)(i, j)-IDS and a
> b. If m and n increase, critical node survivability converges to 0.

 P*((i, j), (m, n)) →1 if j/i < n/m and m,n→∞
P*((i, j), (m, n)) →0 if j/i > n/m and m,n→∞ (4)

Proof: The IDS of the largest availability in the Classb is (1, b)-IDS by Theorem 1.
Here, if l→∞, P(l, bl) →0. Therefore, when m and n increase, while a < b, critical
node survivability of (i, j)-IDS of Classa and (m, n)(i, j)-IDS converges to 1. If a > b, it
converges to 0.                     

Fig. 2 shows an example that critical node survivability converges to 1 or 0, respec-
tively. In Fig. 2(a), the (m, n)(1, 2)-IDS is (2, 8)-IDS. Also, the (1, 4)-IDS and (1, 2)-
IDS do not have critical node survivability. In Fig. 2(b), the (m, n)(5, 15)-IDS is (4, 8)-
IDS. Also the (5, 10)-IDS and (5, 15)-IDS do not have critical node survivability.
Using these properties, an IDS allowing the highest availability can be determined for
a given condition.

3   Conclusion

In this paper we have studied the availability of information dispersal schemes that
can be used for survivable storage systems. It will help construct a large distributed
system allowing high availability. In the study, we made some assumptions in deriv-
ing the models. We will develop a more vigorous model without such assumptions
which allows the best IDS in real environment. We will also investigate the properties
of IDS in terms of both security and availability with which secure and highly avail-
able IDS can be obtained.
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