Abstract
This paper concerns an adaptive finite element method for the elliptic obstacle problem. We consider the formulation of the problem as an elliptic variational inequation. The adaptive algorithm (modified Uzawa adaptive method)we construct is based on a combination of the Uzawa method associated with the corresponding multivalued operator and a convergent adaptive method for the linear problem. As our main result we show that if the adaptive method for the linear problem is convergent, then the adaptive modified Uzawa method is convergent as well. A numerical experiment shows the studied properties of the method.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Friedman, A.: Variational Principles and Free-Boundary Problems. Pure Appl. Math. John Wiley, New York (1982)
Haslinger, J., Hlaváček, I., Nečas, J.: Numerical Methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996)
Ciarlet, P.G.: Basic Error Estimates for Elliptic Problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 24–25. North-Holland, Amsterdam (1991)
Duvaut, G., Lions, J.L.: Inequalities in Mechanics and Physics, Grundlehren Mathematischen Wiss. Springer, Heidelberg (1976)
Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Stud. Appl. Math., vol. 8. SIAM, Philadelphia (1988)
Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Pure Appl. Math., vol. 88. Academic Press, New York (1980)
Rodrigues, J.F.: Obstacle Problems in Mathematical Physics. North-Holland Math. Stud., vol. 134. North-Holland, Amsterdam (1987)
Lions, J.L.: Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod, Paris (1969)
Bänsch, E., Morin, P., Nochetto, R.H.: An adaptive Uzawa fem for the Stokes problem: Convergence without the inf-sup condition. SIAM J. Numer. Anal. 40, 1207–1229 (2002)
Bänsch, E.: Local mesh refinement in 2 and 3 dimensions. Impact Comput. Sci. Engrg. 3, 181–191 (1991)
Schmidt, A., Siebert, K.G.: ALBERT: An adaptive hierarchical finite element toolbox, Preprint 06/2000, Freiburg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez, F.A., Cascón, J.M., Ferragut, L. (2004). A Numerical Adaptive Algorithm for the Obstacle Problem. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds) Computational Science - ICCS 2004. ICCS 2004. Lecture Notes in Computer Science, vol 3037. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24687-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-540-24687-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22115-9
Online ISBN: 978-3-540-24687-9
eBook Packages: Springer Book Archive