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Abstract. This paper concerns an adaptive finite element method for
the elliptic obstacle problem. We consider the formulation of the problem
as an elliptic variational inequation. The adaptive algorithm (modified
Uzawa adaptive method)we construct is based on a combination of the
Uzawa method associated with the corresponding multivalued operator
and a convergent adaptive method for the linear problem. As our main
result we show that if the adaptive method for the linear problem is
convergent, then the adaptive modified Uzawa method is convergent as
well. A numerical experiment shows the studied properties of the method.

1 Introduction

Adaptive mesh refinement based on a posteriori error estimates is an essential
instrument for efficient numerical solving of Partial Differential Equations, in
particular nonlinear problems.

The obstacle problem may be considered as a model problem for variational
inequalities (see, e.g,[1],[2], [5], [6],[7] ). The obstacle problem belongs to a class
of problems which have found applications in such diverse fields as elasticity
and fluid dynamics(see,e.g,[4],[5],[6],[7]). These problems are characterized by
free boundaries that are a priori unknown. An issue to consider is that in their
formulation the solution is sought in a convex and not necessarily linear subset
of some vector space.

In this paper we construct an adaptive finite element method for the elliptic
obstacle problem (adaptive modified Uzawa method). We formulate the varia-
tional inequality in terms of a multivalued operator. As it is well known, the
Uzawa algorithm consists in solving in each iteration a linear problem and a
nonlinear adaptation of the Lagrange multiplier associated with the multivalued
equation. As our main result we show that if the adaptive method applied for
the linear equation is convergent then, the adaptive modified Uzawa method is
convergent as well.

The convergence is proved with respect to a discrete solution in the space
corresponding to a sufficiently refined mesh. In order to assure the convergence of
the Lagrange multiplier, the space of piecewise constant finite element functions
is extended with bubble functions.
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We get the following convergence result:

Main result. Let (Uj , Pj) the sequence of finite element solutions of the lin-
ear problem and the corresponding Lagrange multiplier produced by the adaptive
modified Uzawa algorithm. There exist positive constants C and δ < 1 such that

‖u− Uj‖+ |p− Pj | ≤ Cδj

where | · | is the L2(Ω) norm and ‖ · ‖ := |∇ · | is the energy norm; u and p are
the discrete solutions on a sufficiently refined mesh.

Several examples show the convergence of the method. The numerical ex-
periments have been developed with the finite element toolbox ALBERT [11],
extended with new function basis including bubble functions.

2 Continuous Problem

Let Ω a bounded, polyhedral domain in R
d(d = 2, 3). L2(Ω) the space of

Lebesgue-measurable functions that are square-integrable. Set W := H1(Ω) the
Sobolev space of functions in L2(Ω) with weak derivatives of first order in L2(Ω).
V := H1

0 (Ω) is the subspace of W whose functions vanish on boundary ∂Ω. In
the following, (·, ·) denotes the inner product in L2 and < ·, · > the duality
pairing between the corresponding spaces. Moreover, consider the bilinear and
linear forms:

a(u, v) = (∇u,∇v), < Au, v >= a(u, v),∀u, v ∈ V (1)

< F, v >= (f, v) (2)

The rest of the data is given by a force density f ∈ L2(Ω) and an obstacle
ψ ∈ W with ψ ≤ 0 on ∂Ω. The obstacle ψ is associated with the nonempty,
V-closed, and convex set of admisible displacements:

K := {v ∈ V|v ≥ ψ a.e. in Ω} (3)

The continuous problem reads as follows:

Continuous Problem. Given Ω,f ,ψ as above, find u ∈ K such that the follow-
ing variational inequality holds:

a(u, v − u) ≥ (f, v − u) ∀v ∈ K (4)

It is well known that the above problem admits a unique solution u, see, e.g.
[3]. The unilateral constraint u ≥ ψ yields a line singularity (free boundary) that
is the internal boundary of the contact set:

C := {x ∈ Ω : u(x) = ψ(x)} (5)

The free boundary location is a priori unknown and a prime computational
objective.
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3 Formulation with Multivalued Operator

Consider the functional on V that characterizes the convex K:

IK(v) =
{

0 v ∈ K
∞ v /∈ K (6)

The problem (4) is equivalent to: Find u ∈ V such that

Au+ p = F in V
′ (7)

p ∈ ∂IK(u) in V
′ (8)

where ∂IK is the subdiferential of IK, which is a multivalued operator, and V
′

is the dual space of V. Set Πλ the Yosida approximation of ∂IK. The solution is
then characterized by the existence of p ∈ V, such that the pair (u, p) ∈ V × V

holds:

Au+ p = F in V
′ (9)

p = Πλ(u+ λp) in V
′ (10)

The operator Πλ = 1
λ (Id − PK), where PK is the projection operator on K.

Moreover, Πλ is a Lipschitz operator with constant 1/λ

4 Discretization

Let Th be a uniformly regular triangulation of Ω characterized by the diameter
h. Let Vh ⊂ V indicate the space of continuous piecewise linear finite element
functions and extended with the bubble functions over Th, i.e., Vh := {vh ∈
C0(Ω̄)| ∀T ∈ Th, vh|T ∈ P1(T ) + B(T )}, where B(T ) is generated by the
product λ1λ2λ3 of the barycentric coordinates. Let Mh ⊂ L2(Ω) be the space of
piecewise constant finite element functions over Th.

We consider the operator Πλ,h = 1
λ (Id − PKh

), where Kh is a suitable ap-
proximation of K, that is, Kh = {q ∈ Mh| q|T ≥ ψ(bT ) ∀T ∈ Th}, being bT

the barycentre of T . The discrete problem reads as follows:

Find (uh, ph) ∈ Vh ×Mh such that

Auh +Rtph = F (11)

ph = Πλ,h(Ruh + λph) (12)

where R denotes the orthogonal projection operator in L2(Ω) norm from Vh

onto Mh and Rt is its transposed operator.
The Uzawa algorithm iterations are written:

For any ph
(0),obtained ph

(i−1)

Auh
(i) = F −Rtph

(i−1) (13)

ph
(i) = Πλ,h(Ruh

(i) + λph
(i−1)) (14)
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It is well known that the above algorithm is convergent: for some λ > 0 we
have

lim
i→∞

‖uh
(i) − uh‖ = 0 (15)

Remark 1. Notice that the above algorithm may be considered as a fixed point
iteration for the application defined over Mh:

q → Πλ(λ(I − 1
λ
RA−1Rt)q +RA−1F ) (16)

Since Vh and Mh are finite dimensional spaces and Vh has bubble functions,
the kernel of Rt is null. Thus, the application

Mh → R

q → |Rtq|

defines a norm in Mh.We can now choose λ such that:

|I − 1
λ
RA−1Rt| = 1− β(h) < 1 (17)

hence,
|ph

i − ph| ≤ (1− β(h))|ph
i−1 − ph| (18)

and
lim
h→0

β(h) = 0 (19)

5 Adaptive Algorithm

In this section we describe the adaptive-modified Uzawa method. To simplify
notations let us assume that Tj stands for the mesh obtained from Tj−1 by
refining and the corresponding sets of finite element functions are denoted by
(Vj ,Mj) and (Vj−1,Mj−1)). Consider a pair of successions:

V0 ⊂ V1 ⊂ . . . ⊂ Vj ⊂ Vj+1 ⊂ . . . ⊂ VJ = Vh

M0 ⊂M1 ⊂ . . .⊂Mj ⊂Mj+1 ⊂ . . . ⊂MJ = Mh

For any P0 ∈M0, ε0 > 0, 0 < γ < 1. Given Pj−1 ∈Mj−1, let uj ∈ VJ denote
the solution of

a(uj , v) =< F, v > −(Pj−1, v) ∀v ∈ VJ (20)

An adaptive FEM method is applied to find Uj ∈ Vj such that

‖Uj − uj‖ ≤ Cεj , |(Rj −RJ)Uj | < Cεj (21)

where εj < γεj−1. This procedure is denoted by
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(Tj , Uj)← ELLIPTIC(Tj−1, Uj−1, εj , f) (22)

We, finally, actualize the multiplier:

Pj = Πλ,j(RjUj + λPj−1) (23)

The following box describes the algorithm:

With the hypothesis above, we have the following convergence theorem for
the algorithm:

Theorem 1. There exist positive constants C and δ < 1 such that the iterative
solutions (Uj , Pj) produced by the adaptive-modified Uzawa method satisfy:

‖uJ − Uj‖+ |pJ − Pj | ≤ Cδj (24)

where (uJ , pJ) ∈ VJ ×MJ denote the solution of the problem (11)-(12).

Sketch of the proof in the case ψ = 0:

Pj = Πλ,j(RjUj + λPj−1) = (25)

= Πλ,j(RJuj + λPj−1 +RJ(Uj − uj) + (Rj −RJ)Uj) (26)

The solution uj of (20) may be written as uj = A−1(F −Rt
JPj−1). Observe that

in the case ψ = 0 we have Πj(z) = ΠJ(z) if z ∈Mj . Hence

Pj = Πλ,J(λ(I − 1
λ
RJA

−1Rt
J)Pj−1 +RJA

−1F +RJ(Uj − uj) + (Rj −RJ)Uj)

(27)

If we write pJ , the solution of (12), as follows

pJ = Πλ,J(λ(I − 1
λ
RJA

−1Rt
J)pJ +RJA

−1F ) (28)

Then, subtracting (27) and (28), applying norms, we find an upper bound, for
different constants C

|pJ − Pj | ≤ (1− β(h))|pJ − Pj−1|+
C

λ
‖Uj − uj‖+

C

λ
|(Rj −RJ)Uj |

|pJ − Pj | ≤ (1− β(h))|pJ − Pj−1|+
C

λ
ε0γ

j
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As in [9], by induction arguments we obtain

|pJ − Pj | ≤ |pJ − P0|ηj +
1
λ
ε0jη

j ≤ Cδj (29)

where η = max{(1− β(h)), γ} and η < δ < 1.

To find an error bound for ‖uJ − Uj‖, observe that
‖uJ − uj‖ ≤ C|pJ − Pj |. Hence,

‖uJ − Uj‖ ≤ ‖uJ − uj‖+ ‖uj − Uj‖ ≤ C(|pJ − Pj |+ εj) (30)

which proves the result.
For the case ψ �= 0 we need to add |ψ − ψj | < Cεj to the condition (21)

where ψj is the interpolated function in Mj .

6 Numerical Experiment

Consider Ω = {x ∈ R
2 : ‖x‖ < 1}, f(x) = 0, and ψ(x) = max{0, 1− 4‖x‖},∀x ∈

Ω. The solution of the problem u(x) = 1− ‖x‖, for all x ∈ Ω and C(u) = {0}
Let us assume an initial triangulation T0 of Ω, and the posteriori error esti-

mate

‖u− uh‖ ≤ η(uh) = (
∑

T∈T0

ηT (uh)2)1/2 (31)

where(see [10] for H1 error estimate for the linear problem −∆u = f(x))

ηT (uh)2 = C2
0h

2
T ‖ −∆uh + f(·)‖2L2(T ) +

+C2
1

∑
∂T∩Ω

hT ‖[[ν · ∇uh]]‖2L2(Γ )

If tol is a given allowed tolerance for the error, and η(uh) > tol, we refine the
mesh while η > tol. For the Maximum strategy (see [11]), a threshold γ ∈ (0, 1)
is given, and all elements T ∈ Tj with

ηT > γ max
T ′∈T

ηT ′

are marked for refinement.
Set γ = 0.8, ε0 = tol = 1.0 and the Yosida parameter λ = 1.0. Figure 1

shows the behaviour of the true error in H1−norm as a function of the number
of uh-degrees of freedom (DOF). We observe the improvement in applying our
adaptive method (in solid linestyle) compared with the results obtained with
uniform refinement (in dashed linestyle). Figure 2 shows mesh in the final step
and the solution isolines.
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Fig. 1. log-log error and DOF for ε0 = 1.0

Fig. 2. Mesh and solution isolines

7 Conclusions

We have developed an adaptive Uzawa algorithm to solve the obstacle problem
which is a modification of the classical Uzawa method. We justify the use of a
a-posteriori error estimation from the linear elliptic problems for this kind of
non-linear problems. The numerical results asserts the validity of the theoretical
analysis and the efficiency of the algorithm. A better improvement should be
obtained with a finest control of the interpolation error of the obstacle function
ψ. This will be done in a future research.
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2. J. Haslinger, I. Hlaváček and J. Nečas, Numerical Methods for unilateral problems
in solid mechanics, Handbook of Numerical Analysis. Vol. IV, P. G. Ciarlet and J.
L. Lions, eds., North-Holland, Amsterdam, 1996, pp.313-485.

3. P. G. Ciarlet, Basic Error Estimates for Elliptic Problems, Handbook of Numerical
Analysis. Vol II, P. G. Ciarlet and J. L. Lions, eds., North-Holland, Amsterdam,
1991,pp.24-25.

4. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics, Grundlehren
Mathematischen Wiss, Springer-Verlag, Berlin, Heidelberg, New York, 1976.

5. N. Kikuchi and J. T. Oden, Contact Problems in Elasticity: A Study of Varia-
tional Inequalities and Finite Element Methods, SIAM Stud. Appl.Math. 8,SIAM,
Philadelphia, 1988.

6. D. Kinderlehrer and G. Stampacchia,An Introduction to Variational Inequalities
and Their Applications, Pure Appl. Math. 88, Academic Press, New York, 1980.

7. J.F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Math.
Stud. 134, North-Holland, Amsterdam, 1987.
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