
Developing a Data Driven System for
Computational Neuroscience

Ross Snider and Yongming Zhu

Montana State University, Bozeman MT 59717, USA

Abstract. A data driven system implies the need to integrate data ac-
quisition and signal processing into the same system that will interact
with this information. This can be done with general purpose proces-
sors (PCs), digital signal processors (DSPs), or more recently with field
programmable gate arrays (FPGAs). In a computational neuroscience
system that will interact with neural data recorded in real-time, clas-
sifying action potentials, commonly referred to as spike sorting, is an
important step in this process. A comparison was made between using a
PC, DSPs, and FPGAs to train a spike sorting system using Gaussian
Mixture Models. The results show that FPGAs can significantly outper-
formed PCs or DSPs by embedding algorithms directly in hardware.

1 Introduction

A data driven system is being developed for computational neuroscience that
will be able to process an arbitrary number of real-time data streams and pro-
vide a platform for neural modeling that can interact with these real-time data
streams. The platform will be used to aid the discovery process where neural
encoding schemes through which sensory information is represented and trans-
mitted within a nervous system will be uncovered. The goal of the system is
to enable real-time decoding of neural information streams and allow neuronal
models to interact with living simple nervous systems. This will enable the in-
tegration of experimental and theoretical neuroscience. Allowing experimental
perturbation of neural signals while in transit between peripheral and central
processing stages will provide an unprecedented degree of interactive control in
the analysis of neural function, and could lead to major insights into the biolog-
ical basis of neural computation.

Integrating data acquisition, signal processing, and neural modeling requires
an examination of the system architecture that is most suitable for this endeavor.
This examination was done in the context of spike sorting, which is a necessary
step in the acquisition and processing of neural signals. The spike sorting al-
gorithm used for this study was based on Gaussian mixture models that have
been found useful in signal processing applications, such as image processing,
speech signal processing, and pattern recognition [1,2]. The hardware platforms
compared were the desktop PC, a parallel digital signal processing (DSP) im-
plementation, and the use of field programmable gate arrays (FPGAs).

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 822–826, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Developing a Data Driven System for Computational Neuroscience 823

2 Gaussian Mixture Model

Spike sorting is the classification of neural action potential waveforms. The prob-
ability that an action potential x belongs to neuron oi is given by Bayes’ rule:

p(oi|x) =
p(x|oi)p(oi)

∑M
k=1 p(x|ok)p(ok)

(1)

where the Gaussian component density p(x|oi) is given by

p(x|oi) =
1

(2π)R/2|Σi|1/2 e− 1
2 (x−µi)T Σ−1

i
(x−µi) (2)

and µi is the mean vector waveform and Σi is the covariance matrix of the
Gaussian model oi.

2.1 Expectation Maximization Algorithm

The parameters of the Gaussian mixture model were found via the Expectation-
Maximization (EM) algorithm. The EM algorithm is a general method of finding
the maximum-likelihood estimate of the parameters of an underlying distribution
from a given data set. Details of this iterative parameter estimation technique
can be found in [3]. A log version of the EM algorithm was used to deal with
underflow problems.

3 PC Implementation

For comparison purposes we implemented the training of the EM algorithm
in Matlab on various PCs. We used version 6.5 Release 13 of Matlab since it
significantly increases the computational speed of Matlab as compared to prior
versions. The spike sorting process can be divided into two phases: the model
training phase which is computationally expensive and the spike classification
phase which is much faster. The test results for estimating the parameters of 5
Gaussian components from 720 160-dimensional waveform vectors are shown in
table 1.

Table 1. Training time of EM algorithm using Matlab on PCs. Times are in seconds

Pentium III AMD AMD Dual Pentium IV Average Best
1.2 GHz1 1.37 GHz1 1.2 GHz2 3.3 GHz3

Training Time 8.33 3.42 1.45 1.31 3.22 1.31
1 The Pentium III 1.2GHz and AMD 1.37GHz systems both had 512 MB DDRAM

2 The Dual AMD 1.2GHz system had 4 GB DDRAMM

3 The Pentium IV 3.3GHz system has 1GB DDRAM.

824 R. Snider and Y. Zhu

The best performance for training was 1.31 seconds on the 3.3 GHz Pentium
IV system. Classification performance was 0.05 seconds per waveform vector
which meets real time performance since typical neural spike duration is around 2
ms. However, the training process ran much slower than the classification process
and needs to be accelerated to minimize delays in an experimental setup.

4 Parallel DSP Implementation

To speed up the training, the first approach we tried was to implement the EM
algorithm on a parallel DSP system consisting of 4 floating-point DSPs. Digital
signal processors have become more powerful with the increase in speed and size
of on-chip memory. Furthermore, some modern DSPs are optimized for multi-
processing. The Analog Devices ADSP-21160M DSP has two types of integrated
multiprocessing support, which are the link ports and a cluster bus. We used
Bittware’s Hammerhead PCI board with 4 ADSP-21160M DSPs to speed up the
training algorithm. We used the profile command in Matlab to analyze the EM
algorithm and found that 70% of the execution time was spent in two areas.
These were calculating p(x|oi) and updating the means and covariance matrices.
We wrote a parallel version of the EM to take advantage of the multiprocessing
capability of the board. The results are shown in table 2.

Table 2. Training time of EM algorithm using Parallel DSP board. Times are in
seconds

Data Transfer Method Single DSP Four DSPs
No Semaphores N/A stopped at 7000

Semaphores 14.5 13.5
DMA transfer 15.9 3.4

Not using semaphores in data transfers resulted in bus contention that signif-
icantly lowered performance. Using semaphores to transfer data eliminated the
bus contention but there was hardly any performance gain when going from one
DSP to 4 DSPs. The code was then written to take advantage of the on board
DMA controllers and this resulted in a nearly linear speedup. The 4 DSP solu-
tion appears to be faster than 4 times the single DSP solution. This is because
all the data could be stored in internal memory with 4 DSPs and not with the
single DSP solution.

The parallel DSP method ended up being slower than the best PC imple-
mentation. The reason for this was that the clock speed of DSP was much less
than the high end PC. The clock speed of the ADSP 21160 ran at 80MHz in
order to get single cycle multiplies, while the clock speed of the Pentium IV
ran at 3.3 GHz, which is heavily pipelined. Thus, the high-end PC was about
41 times faster than the DSP than in terms of clock speed. Even so, the DSP
performance was only 11 times slower, highlighting the architectural advantage
that the DSPs have in terms of multiply and accumulate operations.

Developing a Data Driven System for Computational Neuroscience 825

5 FPGA Implementation

Field Programmable Gate Arrays (FPGAs) are reconfigurable devices where
algorithms can be embedded directly in hardware. The advantage with using
FPGAs is there can be hundreds of embedded multipliers running in parallel tied
to custom logic. We targeted Xilinx’s Virtex II FPGA that had the following
resources (table 3).

Table 3. Virtex II XC2V3000 Resources

System Gates CLB Slices Multipliers Block RAMs
3M 14336 96 96

One drawback of using FPGAs to implementation complex algorithms like
the EM algorithm is the long time it can take to design and optimize the al-
gorithms for internal FPGA resources. We used a recently developed tool, Ac-
celFPGA [4], to shorten the design time. AccelFPGA can compile Matlab code
directly into VHDL code. By using AccelFPGA, we could focus on optimizing
the algorithm in Matlab without dealing with low level hardware details inside
the FPGA. The design cycle of the FPGA implementation using this method
can be reduced significantly. The FPGA implementation through AccelFPGA is
not as optimal as directly coding the algorithms in VHDL by hand. However, for
a prototype design, AccelFPGA can provide a time-efficient FPGA solution with
reasonably good performance. The performance of the FPGA implementation is
shown in table 4.

Table 4. Training time of EM algorithm using FPGA

FPGA Execution Time Speedup relative Speedup relative
(sec) to best PC to best DSP implementation
0.08 16.4 42.5

Using AccelFPGA v1.6 and Xilinx ISE v5.2.02i

The FPGA implementation was 16.4 times faster than the fastest PC and 42.5
times faster than the best parallel DSP implementation. It should be noted that
FPGAs are best for fixed-point processing and that the embedded multipliers
are 18x18 bits. Thus the optimal use of FPGAs require the conversion from
floating-point to fixed-point. This is ideally done in Matlab using the fixed-
point toolbox where simulations can be made examining the effects of reduced
precision. Given that the algorithm can be mapped effectively to fixed-point,
the next step is to add compiler directives for AccelFPGA. These directives can
specify the usage of FPGA’s embedded hardware resources such as BlockRAM
and embedded multiplier blocks. The third step is the creation of the RTL model
in VHDL and the associated testbenches which are automatically created by

826 R. Snider and Y. Zhu

the AccelFPGA compiler. The fourth step is to synthesize the VHDL models
using a logic synthesis tool. The gate-level netlist is then simulated to ensure
functional correctness against the system specification. Finally the gate-level
netlist is placed and routed by the place-and-route appropriate for the FPGAs
used in the implementation. The design used 42 of the 96 embedded multipliers
(42%), 58 of the 96 BlockRAMs (60%), and 6378 of the 14336 logic slices (44%).

One advantage of AccelFPGA is that bit-true simulations can be done di-
rectly in the Matlab environment. Testbenches are automatically generated along
with the simulations. You can use these testbenches later in the hardware sim-
ulation and compare the results with the Matlab simulation. As a result, it is
very easy to know whether your hardware implementation is correct or not.

Since Matlab is a high level language, the compiled implementation will typi-
cally no be as good as direct VHDL coding. However, by using proper directives,
you can specify the parallelism of your algorithm and maximize the usage of the
on-chip hardware resources. Hence, you can get a reasonably good performance
out of your implementation.

The structure of the FPGAs is optimized for high-speed fixed-point addition,
subtraction and multiplication. However, a number of other math operations
such as division or exponentiation have to be implemented. This was done via
lookup tables using BlockRAMs.

6 Conclusion

It appears that the use of FPGAs are ideal for use in data driven systems. Not
only are they suitable for digital signal processing applications where incom-
ing data streams need to be processed in real-time, they can also be used to
implement sophisticated algorithms such as the EM algorithm.

References

1. Yang, M.H., Ahuja, N.: Gaussian Mixture Model for Human Skin Color and Its
Application in Image and Video Databases. Proc. of the SPIE, (1999) 3635

2. Reynolds, D.A.: Speaker identification and verification using Gaussian mixture
speaker models. Speech Communication, 17 (1995)

3. Redner, R.A., Walker, H.F.: Mixture Densities, Maximum Likelihood and EM Al-
gorithm. SIAM Review, 26 (1984) 195-239.

4. AccelFPGA User’s Manual. V1.7. www.accelchip.com, (2003)

	Introduction
	Gaussian Mixture Model
	Expectation Maximization Algorithm

	PC Implementation
	Parallel DSP Implementation
	FPGA Implementation
	Conclusion

