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Abstract. A rule-based Support Vector Machine (SVM) classifier is applied to 
tornado prediction. Twenty rules based on the National Severe Storms 
Laboratory’s mesoscale detection algorithm are used along with SVM to 
develop a hybrid forecast system for the discrimination of tornadic from non-
tornadic events. The use of the Weather Surveillance Radar 1998 Doppler data, 
with continuous data streaming in every six minutes, presents a source for a 
dynamic data driven application system. Scientific inquiries based on these data 
are useful for dynamic data driven application systems (DDDAS). Sensitivity 
analysis is performed by changing the threshold values of the rules. Numerical 
results show that the optimal hybrid model outperforms the direct application of 
SVM by 12.7 percent. 

1 Introduction 

Rule-based classification methods have shown promise in physical systems 
applications [1]. One builds a rule-based model by incorporating prior information. In 
the case of Support Vector Machines (SVMs), prior knowledge is incorporated into 
the model as additional constraints in the form of polyhedral rule sets in the input 
space of the given data. These rule sets are supposed to belong to one of two 
categories into which all the data are divided [2, 3].  

Tornado forecasting is an active area of research in the meteorological community 
[4, 5]. State-of-the-science weather radar scans volumes of the atmosphere, producing 
a large amount of information that is updated every 5 to 6 minutes. Scientific inquiries 
based on these data are useful for Dynamic Data Driven Applications Systems 
(DDDAS). Once the data are collected, they are quickly processed by algorithms that 
look for signatures of tornadoes in near-real time, since an extra minute of lead-time 
can save lives. The dynamic nature of DDDAS problems requires us to address the 
time dependency or real time nature of the applications. Certain applications (e.g., 
tornado formation) require real time response to observations from data. Typically, in 
the prediction of severe weather potential, data from observations taken hours 
previous to the formation are used and these are not updated with real data as they 
become available. Incorporating new dynamically injected data is a fundamental 
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change in the design. The use of the Weather Surveillance Radar 1998 Doppler 
(WSR-88D) data, with continuous data streaming in every six minutes, presents a 
source for data driven simulations. One of the severe weather detection algorithms, 
created by the National Severe Storms Laboratory (NSSL) and in use at the WSR-
88D, is the Mesocyclone Detection Algorithm (MDA) [4]. This dynamic algorithm 
uses the data stream outputs of the WSR-88D and is designed to detect storm–
circulations associated with regions of rotation in thunderstorms. The MDA is used by 
meteorologists as one input in their decision to issue tornado warnings. Recent work 
by Trafalis et al. [4, 5] has shown that SVMs applied to the MDA offer a promising 
role in improved tornado classification. We present a novel approach by incorporating 
rules into SVMs of the MDA attributes as they stream in just prior to tornado 
formation. These rule based sets classify the data into one of three categories, tornado, 
non-tornado and unclassified. Thus, the rules partition the input space into regions for 
which we know, with a high degree of certainty, the label of points located in those 
regions. Our approach is different from [3] in the sense that the rules are combined 
with SVM in a sequential approach. This paper is organized as follows. In section 2, 
the data description is given. In section 3, we provide a description of rule-based 
SVM classifiers. Section 4 describes the experimentation procedure. Section 5 
provides computational results and, in section 6, analysis and conclusions are 
provided. 

2   Data 

The MDA data set used for this research is based on the outputs from the WSR-88D 
radar that is collected just prior to the formation of a pre-tornadic circulation. Any 
circulation detected on a particular volume scan of the radar can be associated with a 
report of a tornado. In the severe weather database, supplied by NSSL, there is a label 
for tornado ground truth that is based on temporal and spatial proximity. If there is a 
tornado reported between the beginning and ending of the volume scan, and the report 
is within a reasonable distance of a circulation detection, then the ground truth value 
is flagged. If a circulation detection falls within the prediction "time window" of -20 
to +6 minutes of the ground truth report duration, then the ground truth value is also 
flagged. The key idea behind these timings is to determine whether a circulation will 
produce a tornado within the next 20 minutes, a suitable lead time for advanced 
severe weather warnings by the National Weather Service. Owing to the 
autocorrelation in the MDA attributes, a sampling strategy is used to minimize serial 
correlation. These sampled data are divided into independent training and testing sets, 
with 749 and 618 observations, respectively. 

3    Rule-Based Support Vector Machine Classifiers 

3.1   Rule Generation 

In this work, we consider a rule-based approach of a decision tree type as shown in 
Fig. 1. Nodes in the decision tree involve testing a particular attribute. The test at a  
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Fig. 1. Tree diagram of rule generation and decisions. Ovals represent nodes, squares represents 
leaves 

node compares an attribute value with a constant threshold. Leaf nodes give a 
classification that applies to all instances that reach the leaf. When a leaf is reached, 
the instance is classified according to the class assigned to the leaf. Note that the 
output of the last node referring to the unclassified category becomes an input to the 
SVM that provides the final label to the unclassified cases. 

There were 23 MDA attributes available for discriminating tornadoes from non-
tornadoes [4]. For each attribute, we considered the corresponding probability 
distribution function for tornado and non-tornado cases arising from the training data. 
The selection of the threshold for each rule was based on eliminating misclassification 
by investigating if the minimum for a non-tornado case had a value less than the 
minimum for a tornado case for a specific attribute. If such a condition holds, then a 
region unique to non-tornadoes is found.  

Similarly, if the maximum for a non-tornado case had a value less than the 
maximum for a tornado case, for a specific attribute, a region unique to tornado cases 
is found. Of the 23 attributes, only 20 were found to be useful for rule generation. The 
thresholds used for tornado and non-tornado discrimination are shown in Table 1. 

3.2   Support Vector Machines (SVMs) 

Given a set of data points { } 1 and  with ,...,1  ),,( ±=ℜ∈= i
n

iii yxiyx , the SVM 

finds a classifier that separates the two classes of points with maximum margin 
separation (Fig. 2). The SVM formulation can be written as follows [6], 
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Table 1. Threshold values for each MDA attribute. See [4] for description of attributes 

Non-tornado thresholds  Tornado thresholds 

if x1 < 90, then non-tornado   
if x2 < 617, then non-tornado  if x2 > 12219, then tornado 
if x3 < 0, then non-tornado  if x3 > 13, then tornado 
if x4 < 813, then non-tornado  
if x5 < 1091, then non-tornado  
if x6 < 124, then non-tornado  
if x7 < 6, then non-tornado  
if x8 < 10, then non-tornado  
if x9 < 122, then non-tornado  
if x10 <2, then non-tornado if x10 > 77, then tornado  
 if x11 > 83, then tornado  
if x12 < 106, the non-tornado   
if x13 < 3, then non-tornado   
if x14 < 11, then non-tornado   
if x15 < 122, then non-tornado  
if x16 < 106, then non-tornado  
if x17 < 617, then non-tornado  
 if x18 > 113, then tornado 
 if x22 >  26, then tornado  
 if x23 > 28, then tornado 

where C is a parameter to be chosen by the user that controls misclassifications, w is 
referring to the vector perpendicular to the separating hyperplane, ηi refers to the 
misclassification error variables and b is the bias of the separating hyperplane. A 
larger C corresponds to assigning a larger penalty to errors. Introducing positive 
Lagrange multipliers αi, to the inequality constraints in model (1) we obtain the 
following dual formulation: 
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The solution of the primal problem is then given by w = ΣiαI yi xi where w is the vector 
that is perpendicular to the separating hyperplane. The free coefficient b can be found 
from the relation αi (yi (w xi + b) - 1) = 0, for any i such that αi is not zero. The use of a 
kernel function allows the SVM to operate efficiently in nonlinear high-dimensional 
feature space [7].  
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Fig. 2. The geometric illustration of SVM 

4   Experiments 

In our experimentation, the data are split into training and testing sets. The testing set 
is sampled independently five times. The first set of experiments is performed by 
using SVM only on the five testing samples. The total misclassification error is 
computed as the average of the misclassification error of each sample. The second set 
of experiments is performed by extracting the rules from the training data and 
applying those rules in the testing phase. Based on the rules, each testing sample is 
divided into three different sets: non-tornado, unclassified, and tornado. In the testing 
phase, those observations not classified by the rules are used as inputs to SVM. The 
SVM is trained on the training set then tested on five different unclassified samples. 
For each testing set, the misclassification error for the non-tornado rules set, SVM and 
tornado rules set are computed. The OSU SVM Classifier Matlab Toolbox [8] was 
used to run experiments of SVM.  

5   Computational Results 

The results of the experiments are presented in Fig. 3 and Table 2. The values in the 
table are misclassification error rates for non-tornado and tornado and SVM 
components of the total hybrid system. After initial experimentation, it was noted that 
the rules components of the system had a lower error rate than the SVM component of 
the system. Accordingly, altering the rules to admit additional cases was considered 
by creating a multiplier for the threshold values in Table 1. This multiplier controls 
the level of threshold values (e.g., in Table 1, for attribute 1, the original threshold, 
90, corresponds to multiplier 1 and 1.05 times 90 equals 94.5 and this value admits 
additional observations into the non-tornado category). Table 2 and Fig. 3 illustrate 
the sensitivity of misclassification error with respect to the threshold. Table 3 shows 
the misclassification error for SVM for each testing sample and the average of the 
five samples. 
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Fig. 3. Boxplots of misclassification error due to (a) non-tornado rules set, (b) SVM, (c) 
tornado rules set and (d) total hybrid system. Threshold multipliers are shown on X-axis and 
the numbers of cases classified are shown above the boxplots in (a), (b) and (c) 

Table 2. Misclassification error of the hybrid system components and total system 

Multiplier 0.90 0.95 1.00 1.05 1.10 1.15 
Non-tornado rules 0.0191 0.0237 0.0174 0.0454 0.086 0.1373 
Tornado rules 0.0316 0.0474 0.0550 0.0968 0.1032 0.1550 
SVM 0.2024 0.2063 0.2110 0.1997 0.2093 0.2154 
Total system 0.1648 0.1638 0.1648 0.1449 0.1485 0.1725 

Table 3. Misclassification error for SVM 

 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Average 
SVM 0.1664 0.1778 0.1713 0.1811 0.1566 0.1706 
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6   Analysis and Conclusions 

Tables 2 and 3, show that the best misclassification error for the hybrid model 
(0.1449) is 12.7% lower than the one for the model based solely on SVM (0.1706). 
The reason for the total system improvement can be seen in Figure 3a,c and Table 2, 
where the non-tornado rules, based on the threshold given in Table 1, have a mean 
error rate of 0.0174. Similarly, the tornado rules have a mean error rate of 0.055 at the 
same multiplier. In contrast, the SVM component has an error rate of 0.211. The 
behavior of the rules, as seen in Fig. 3 a, c is interesting as the misclassification rate is 
remarkably low (approximately 5 percent) for threshold multipliers of 0.90 to 1.00. 
The trade-off is that fewer observations are classified as tornadoes or non-tornadoes. 
As the threshold multipliers increase to 1.05 and beyond, the misclassification error 
increases considerably to approximately 15 percent indicating a poorer discrimination 
between tornadoes, and non-tornadoes. In contrast, the SVM, based on unclassified 
data (Fig. 3c), is insensitive to the threshold multiplier. 

Therefore, given the lower rates in the non-tornado and tornado rules, it is logical 
to create a hybrid system to capitalize on the disparity in error rate. By admitting 
additional observations into the leaves of the decision tree prior to sending the 
remaining observations to the SVM, the optimal system is found. This occurs at a 
multiplier of 1.05 times the threshold values in Table 1. Experiments are planned for 
injection of information from successive volume scans to assess additional predictive 
capability in a constantly updating form of DDDAS. 
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