Skip to main content

Analysing Spectroscopic Data Using Hierarchical Cooperative Maximum Likelihood Hebbian Learning

  • Conference paper
MICAI 2004: Advances in Artificial Intelligence (MICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2972))

Included in the following conference series:

  • 1498 Accesses

Abstract

A novel approach to feature selection is presented in this paper, in which the aim is to visualize and extract information from complex, high dimensional spectroscopic data. The model proposed is a mixture of factor analysis and exploratory projection pursuit based on a family of cost functions proposed by Fyfe and MacDonald [12] which maximizes the likelihood of identifying a specific distribution in the data while minimizing the effect of outliers [9,12]. It employs cooperative lateral connections derived from the Rectified Gaussian Distribution [8,14] to enforce a more sparse representation in each weight vector. We also demonstrate a hierarchical extension to this method which provides an interactive method for identifying possibly hidden structure in the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  2. Charles, D., Fyfe, C.: Modeling Multiple Cause Structure Using Rectification Constraints. Network: Computation in Neural Systems 9, 167–182 (1998)

    Article  MATH  Google Scholar 

  3. Charles, D.: Unsupervised Artificial Neural Networks for the Identification of Multiple Causes in Data. PhD thesis, University of Paisley (1999)

    Google Scholar 

  4. Fyfe, C.: Negative Feedback as an Organising Principle for Artificial Neural Networks, PhD Thesis, Strathclyde University (1995)

    Google Scholar 

  5. Fyfe, C.: A Neural Network for PCA and Beyond. Neural Processing Letters 6, 33–41 (1996)

    Article  Google Scholar 

  6. Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: European Symposium on Artificial Neural Networks (2002)

    Google Scholar 

  7. Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  8. Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. Advances in Neural Information Processing Systems 10, 350 (1998)

    Google Scholar 

  9. Smola, A.J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report NC2-TR-1998-030, NeuroCOLT2 Technical Report Series (1998)

    Google Scholar 

  10. Xu, L.: Least Mean Square Error Reconstruction for Self-Organizing Nets. Neural Networks 6, 627–648 (1993)

    Article  Google Scholar 

  11. Karhunen, J., Joutsensalo, J.: Representation and Separation of Signals Using Nonlinear PCA Type Learning. Neural Networks 7, 113–127 (1994)

    Article  Google Scholar 

  12. Fyfe, C., MacDonald, D.: ε-Insensitive Hebbian learning. Neuro Computing (2002)

    Google Scholar 

  13. Friedman, J., Tukey, J.: A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transaction on Computers (23), 881–890 (1974)

    Article  MATH  Google Scholar 

  14. Corchado, E., Fyfe, C.: Orientation Selection Using Maximum Likelihood Hebbian Learning. International Journal of Knowledge-Based Intelligent Engineering Systems 7(2), Brighton, United Kingdom (April 2003) ISSN: 1327-2314

    Google Scholar 

  15. Bishop, C.M.: Neural Networks for Pattern Recognition, Oxford (1995)

    Google Scholar 

  16. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. In: Data mining and Knowledge Discovery, Kluwer Academic Publishing, Dordrecht (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

MacDonald, D., Corchado, E., Fyfe, C. (2004). Analysing Spectroscopic Data Using Hierarchical Cooperative Maximum Likelihood Hebbian Learning. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds) MICAI 2004: Advances in Artificial Intelligence. MICAI 2004. Lecture Notes in Computer Science(), vol 2972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24694-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24694-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21459-5

  • Online ISBN: 978-3-540-24694-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics