Skip to main content

A Biologically Motivated and Computationally Efficient Natural Language Processor

  • Conference paper
MICAI 2004: Advances in Artificial Intelligence (MICAI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2972))

Included in the following conference series:

  • 1620 Accesses

Abstract

Conventional artificial neural network models lack many physiological properties of the neuron. Current learning algorithms are more concerned to computational performance than to biological credibility. Regarding a natural language processing application, the thematic role assignment – semantic relations between words in a sentence -, the purpose of the proposed system is to compare two different connectionist modules for the same application: (1) the usual simple recurrent network using backpropagation learning algorithm with (2) a biologically inspired module, which employs a bi-directional architecture and learning algorithm more adjusted to physiological attributes of the cerebral cortex. Identical sets of sentences are used to train the modules. After training, the achieved output data show that the physiologically plausible module displays higher accuracy for expectable thematic roles than the traditional one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Edelman, G.M., Tononi, G.: A Universe of Consciousness - How Matter Becomes Imagination. Basic Books, New York (2000)

    Google Scholar 

  2. Rosa, J.L.G.: An Artificial Neural Network Model Based on Neuroscience: Looking Closely at the Brain. In: Kůrková, V., Steele, N.C., Neruda, R., Kárný, M. (eds.) Artificial Neural Nets and Genetic Algorithms – Proc. of the Intl. Conf. in Prague, ICANNGA 2001, Czech Republic, April 22-25, pp. 138–141. Springer, Heidelberg (2001)

    Google Scholar 

  3. O’Reilly, R.C.: Biologically Plausible Error-driven Learning using Local Activation Differences: The Generalized Recirculation Algorithm. Neural Comp. 8(5), 895–938 (1996)

    Article  MathSciNet  Google Scholar 

  4. Haegeman, L.: Introduction to Government and Binding Theory. Basil Blackwell Inc., Cambridge (1991)

    Google Scholar 

  5. Dowty, D.: On the Semantic Content of the Notion of ’Thematic Role’. In: Chierchia, G., et al. (eds.) Properties, Types and Meaning, Kluwer, Dordrecht (1989)

    Google Scholar 

  6. Rosa, J.L.G., Françozo, E.: Linguistic Relations Encoding in a Symbolic-Connectionist Hybrid Natural Language Processor. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 259–268. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. McClelland, J.L., Kawamoto, A.H.: Mechanisms of Sentence Processing: Assigning Roles to Constituents of Sentences. In: McClelland, J.L., Rumelhart, D.E. (eds.) Parallel Distributed Processing, vol. 2, A Bradford Book, The MIT Press (1986)

    Google Scholar 

  8. Rosa, J.L.G.: A Biologically Inspired Connectionist System for Natural Language Processing. In: Proc. of the 2002 VII Brazilian Symposium on Neural Networks (SBRN 2002), Recife, Brazil, November 11-14, pp. 243–248. IEEE Computer Society Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  9. Rosa, J.L.G., Françozo, E.: Hybrid Thematic Role Processor: Symbolic Linguistic Relations Revised by Connectionist Learning. In: Proc. of IJCAI 1999-16th. Intl. Joint Conf. on Artificial Intelligence, Stockholm, Sweden, July 31 - August 6, vol. 2, pp. 852–857 (1999)

    Google Scholar 

  10. Elman, J.L.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  11. Crick, F.H.: The Recent Excitement about Neural Networks. Nature 337, 129–132 (1989)

    Article  Google Scholar 

  12. Rosa, J.L.G.: A Biologically Motivated Connectionist System for Predicting the Next Word in Natural Language Sentences. In: Proc. of the 2002 IEEE Intl. Conf. on Systems, Man, and Cybernetics, Hammamet, Tunisia, October 6-9 (2002)

    Google Scholar 

  13. Hinton, G.E., McClelland, J.L.: Learning Representations by Recirculation. In: Anderson, D.Z. (ed.) Neural Information Processing Systems 1987, pp. 358–366. American Institute of Physics, New York (1988)

    Google Scholar 

  14. Haykin, S.: Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  15. O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience - Understanding the Mind by Simulating the Brain. A Bradford Book, The MIT Press, Cambridge (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rosa, J.L.G. (2004). A Biologically Motivated and Computationally Efficient Natural Language Processor. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds) MICAI 2004: Advances in Artificial Intelligence. MICAI 2004. Lecture Notes in Computer Science(), vol 2972. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24694-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24694-7_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21459-5

  • Online ISBN: 978-3-540-24694-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics