Skip to main content

On Partitioning Interval and Circular-Arc Graphs into Proper Interval Subgraphs with Applications

  • Conference paper
LATIN 2004: Theoretical Informatics (LATIN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2976))

Included in the following conference series:

Abstract

In this note, we establish that any interval or circular-arc graph with n vertices admits a partition into O(log n) proper interval subgraphs. This bound is shown to be asymptotically sharp for an infinite family of interval graphs. Moreover, the constructive proof yields a linear-time and space algorithm to compute such a partition. The second part of the paper is devoted to an application of this result, which has actually inspired this research: the design of an efficient approximation algorithm for a \(\mathcal{NP}\)-hard problem of planning working schedules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, M.G., Atallah, M.J., Chen, D.Z., Lee, D.T.: Parallel algorithms for maximum matching in complements of interval graphs and related problems. Algorithmica 26, 263–289 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Jansen, K.: Restrictions of graph partition problems. Part I. Theoretical Computer Science 148, 93–109 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.: Simple linear time recognition of unit interval graphs. Information Processing Letters 55, 99–104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Corneil, D.G., Olariu, S., Stewart, L.: The ultimate interval graph recognition algorithm? In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 175–180. ACM Publications, New York (1998)

    Google Scholar 

  5. Gardi, F.: Efficient algorithms for disjoint matchings among intervals and related problems. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 168–180. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Computer Science and Applied Mathematics Series. Academic Press, New York (1980)

    MATH  Google Scholar 

  7. Gupta, U.I., Lee, D.T., Leung, J.Y.-T.: Efficient algorithms for interval graphs and circular-arc graphs. Networks 12, 459–467 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fishburn, P.C.: Interval Orders and Interval Graphs. John Wiley & Sons, New York (1985)

    MATH  Google Scholar 

  9. Habib, M., McConnel, R., Paul, C., Viennot, L.: Lex-BSF and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing. Theoretical Computer Science 234, 59–84 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. McConnel, R.: Linear time recognition of circular-arc graphs. In: Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 386–394. IEEE Computer Society Publications, Los Alamitos (2001)

    Google Scholar 

  11. Olariu, S.: An optimal greedy heuristic to color interval graphs. Information Processing Letters 37, 21–25 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bamboo-Planification by Prologia - Groupe Air Liquide, http://prologianet.univ-mrs.fr/bamboo/bambooplanification.html

  13. Roberts, F.S.: Graph Theory and its Application to the Problems of Society. SIAM Publications, Philadelphia (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gardi, F. (2004). On Partitioning Interval and Circular-Arc Graphs into Proper Interval Subgraphs with Applications. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24698-5_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21258-4

  • Online ISBN: 978-3-540-24698-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics