Abstract
In this paper we provide an explicit way to compute asymptotically almost sure upper bounds on the bisection width of random d-regular graphs, for any value of d. We provide the bounds for 5 ≤ d ≤ 12. The upper bounds are obtained from the analysis of the performance of a randomized greedy algorithm to find bisections of d-regular graphs. We also give empirical values of the size of bisection found by the algorithm for some small values of d and compare it with numerical approximations of our theoretical bounds. Our analysis also gives asymptotic lower bounds for the size of the maximum bisection.
The work of the first and second authors was partially supported by the IST programme of the EU under contract IST-1999-14186 (ALCOM-FT). The first author is also supported by the Distinció per a la recerca of the Generalitat de Catalunya. The second author is also supported by the Spanish CICYT project TIC-2002-04498-C05-03. The third author is supported by the Canada Research Chairs Program and partially by the Australian Research Council when this author was at the University of Melbourne.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N.: On the edge-expansion of graphs. Combinatorics, Probability and Computing 6, 145–152 (1997)
Bezrukov, S.L., Elsässer, R., Monien, B., Preis, R., Tillich, J.-P.: New spectral lower bounds on the bisection width of graphs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS, vol. 1928, pp. 23–34. Springer, Heidelberg (2000)
Bollobas, B.: The isoperimetric number of random regular graphs. European Journal. of combinatorics 9, 241–244 (1984)
Bollobas, B.: Random Graphs, 2nd edn. Cambridge University Press, Cambridge (2001)
Bui, T., Chaudhuri, S., Leighton, T., Sipser, M.: Graph bisection algorithms with good average case behavior. Combinatorica 7, 171–191 (1987)
Díaz, J., Do, N., Serna, M.J., Wormald, N.C.: Bounds on the max and min bisection of random cubic and 4-regular graphs. Theoretical Computer Science 307, 531–547 (2003)
Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)
Duckworth, W., Wormald, N.C.: Minimum independent dominating sets of random cubic graphs. Random Structures and Algorithms 21, 147–161 (2002)
Fiedler, M.: A property of the eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czechoslovak Mathematical Journal 25, 619–633 (1975)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)
Jansen, K., Karpinski, M., Lingas, A., Seidel, E.: Polynomial time approximation schemes for MAX-BISECTION on planar and geometric graphs. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 365–375. Springer, Heidelberg (2001)
Kostochka, A., Melnikov, L.: On bounds of the bisection width of cubic graphs. In: Nesetril, J., Fiedler, M. (eds.) Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, pp. 151–154. Elsevier Science Publishers, Amsterdam (1992)
Locke, S.C.: Maximum k-colorable subgraphs. Journal of Graph Theory 6(2), 123–132 (1982)
Monien, B., Preis, R.: Upper bounds on the bisection width of 3- and 4-regular graphs. In: Sgall, A.P.J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 524–536. Springer, Heidelberg (2001)
Shearer, J.B.: A note on bipartite subgraphs of triangle-free graphs. Random. Structures Algorithms 3(2), 223–226 (1992)
Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combinatorics, Probabability and Computing 8, 377–396 (1999)
Wormald, N.C.: Differential equations for random processes and random graphs. Annals of Applied Probability 5, 1217–1235 (1995)
Wormald, N.C.: The differential equation method for random graph processes and greedy algorithms. In: Karoński, M., Prömel, H. (eds.) Lectures on Approximation and Randomized Algorithms, pp. 73–155. PWN, Warsaw (1999)
Wormald, N.C.: Models of random regular graphs. In: Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge (1999)
Wormald, N.C.: Analysis of greedy algorithms on graphs with bounded degree. Discrete Mathematics (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Díaz, J., Serna, M.J., Wormald, N.C. (2004). Computation of the Bisection Width for Random d-Regular Graphs. In: Farach-Colton, M. (eds) LATIN 2004: Theoretical Informatics. LATIN 2004. Lecture Notes in Computer Science, vol 2976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24698-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-24698-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21258-4
Online ISBN: 978-3-540-24698-5
eBook Packages: Springer Book Archive