Abstract
INDSCAL is a specific model for simultaneous metric multidimensional scaling (MDS) of several data matrices. In the present work the INDSCAL problem is reformulated and studied as a dynamical system on the product manifold of orthonormal and diagonal matrices. The problem for fitting of the INDSCAL model to the data is solved. The resulting algorithms are globally convergent. Numerical examples illustrate their application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Boik, R.J.: Principal component models for correlation matrices. Biometrika 90, 679–701 (2003)
Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an n−way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)
Chu, M.T.: A continuous Jacobi-like approach to the simultaneous reduction of real matrices. Linear Algebra and its Applications 147, 75–96 (1991)
Chu, M.T., Driessel, K.R.: The projected gradient method for least squares matrix approximations with spectral constraints. SIAM J. Numer. Anal. 27, 1050–1060 (1990)
Chu, M.T., Trendafilov, N.T.: ORTHOMAX rotation problem. A differential equation approach. Behaviormetrika 25, 13–23 (1998)
Chu, M.T., Trendafilov, N.T.: On a differential equation approach to the weighted orthogonal Procrustes problem. Statistics and Computing 8, 125–133 (1998a)
Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall, London (1995)
De Lathauwer, L.: Signal Processing Based on Multilinear Algebra, PhD Thesis, Katholieke Universiteit Leuven (1997), http://www.esat.kuleuven.ac.be/sista/members/delathau.html
De Soete, G., Carroll, J.D., Chaturvedi, A.D.: A modified CANDECOMP method for fitting the extended INDSCAL model. Journal of Classification 10, 75–92 (1993)
Diele, F., Lopez, L., Peluso, R.: The Cayley transform in the numerical solution of unitary differential systems. Advances in Computational Mathematics 8, 317–334 (1998)
Edelman, A., Arias, T., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. and Appl. 20, 303–353 (1998)
Engø, K., Marthinsen, A., Munthe-Kaas, H.: DiffMan–an object oriented MATLAB toolbox for solving differential equations on manifolds (User’s Guide) (1997), http://www.math.ntnu.no/num/synode/
Flury, B.: Common Principal Components and Related Multivariate Models. John Wiley & Sons, New York (1988)
Helmke, U., Moore, J.B.: Optimization and Dynamical Systems. Springer, London (1994)
Hirsch, M.W., Smale, S.: Differential Equations, Dynamical Systems, and Linear Algebra. Academic Press, London (1974)
Iserles, A., Munte-Kaas, H., Norset, S.P., Zanna, A.: Lie group methods. Acta Numerika 9, 1–151 (2000)
Kiers, H.A.L.: Simple structure in component analysis techniques for mixture of qualitative and quantitative variables. Psychometrika 56, 197–212 (1991)
Kroonenberg, P.M.: Three Mode Principal Component Analysis: Theory and Applications. DSWO Press, Leiden (1983)
Lippert, R.A., Edelman, A.: Nonlinear eigenvalue problems (1998), http://www.mit.edu/people/ripper/Template/template.html
Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Application in Statistics and Econometrics. Wiley, New York (1988)
Courcoux, P., Devaux, M.-F., Bouchet, B.: Simultaneous decomposition of multivariate images using three-way data analysis. Application to the comparison of cereal grains by confocal laser scanning microscopy. Chemometrics and Intelligent Laboratory Systems 62, 103–113 (2002)
Owren, B., Welfert, B.: The Newton iteration on Lie groups. BIT 40, 121–145 (2000)
Ramsay, J.O.: Maximum likelihood estimation in multidimensional scaling. Psychometrika 42, 241–266 (1977)
Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM Journal on Scientific Computing 18, 1–22 (1997)
Stiefel, E.: Richtungsfelder und fernparallelismus in n-dimensionalel manning faltigkeiten. Commentarii Mathematici Helvetici 8, 305–353 (1935–1936)
Takane, Y., Young, F.W., De Leeuw, J.: Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42, 7–67 (1977)
ten Berge, J.M.F., Knol, D.L., Kiers, H.A.L.: A treatment of the ORTHOMAX rotation family in terms of diagonalization, and a re-examination of a singular value approach to VARIMAX rotation. Computational Statistics Quarterly 3, 207–217 (1988)
ten Berge, J.M.F., Kiers, H.A.L.: Some clarifications of the CANDECOMP algorithm applied to INDSCAL. Psychometrika 56, 317–326 (1991)
ten Berge, J.M.F., Kiers, H.A.L., Krijnen, W.P.: Computational solutions for the problem of negative saliences and nonsymmetry in INDSCAL. Journal of Classification 10, 115–124 (1993)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trendafilov, N.T. (2004). Orthonormality-Constrained INDSCAL with Nonnegative Saliences. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3044. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24709-8_100
Download citation
DOI: https://doi.org/10.1007/978-3-540-24709-8_100
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22056-5
Online ISBN: 978-3-540-24709-8
eBook Packages: Springer Book Archive