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Abstract. Context-aware computing refers to a computing paradigm
in which the behavior of individual components is determined by the
circumstances in which they find themselves to an extent that greatly
exceeds the typical system/environment interaction pattern common to
most modern computing. The environment has an exceedingly powerful
impact on a particular application component either because the lat-
ter needs to adapt in response to changing external conditions or be-
cause it relies on resources whose availability is subject to continuous
change. In this paper we seek to develop a systematic understanding of
the quintessential nature of context-aware computing by constructing a
formal model and notation for expressing context-aware computations.
We start with the basic premise that, in its most extreme form, context
should be made manifest in a manner that is highly local in appear-
ance and decoupled in fact. Furthermore, we assume a notion of context
that is relative to the needs of each individual component, and we expect
context-awareness to be maintained in a totally transparent manner with
minimal programming effort. We construct the model from first princi-
ples, seek to root our decisions in these formative assumptions, and make
every effort to preserve minimality of concepts and elegance of notation.

1 Introduction

Context-aware computing is a natural next step in a process that started with the
merging of computing and communication during the last decade and continues
with the absorption of computing and communication into the very fabric of
our society and its infrastructure. The prevailing trend is to deploy systems
that are increasingly sensitive to the context in which they operate. Flexible
and adaptive designs allow computing and communication, often packaged as
service activities, to blend into the application domain in a manner that makes
computers gradually less visible and more agile. These are not new concerns for
software engineers, but the attention being paid to context-awareness enhances
a system’s ability to become ever more responsive to the needs of the end-user or
application domain. With the growing interest in adaptive systems and with the
development of tool kits [1,2] and middleware [3] supporting context-awareness,
one no longer needs to ponder whether context-aware computing is emerging
as a new paradigm, i.e., a new design style with its own specialized models
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and support infrastructure. However, it would be instructive to develop a better
understanding of how this transition took place, i.e., what distinguishes a design
that allows a system to adapt to its environment from a design that could be
classified as employing the context-aware paradigm. This is indeed the central
question being addressed in this paper. We want to understand what context-
aware computing is, and we do so by proposing a simple abstract conceptual
model of context-awareness and by attempting to formalize it. Along the way,
we examine the rationale behind our decisions, thus providing both a systematic
justification for the model and the means for possible future refinements.

The term context-awareness immediately suggests a relation between some
entity and the setting in which it functions. Let us call such an entity the ref-
erence agent – it may be a software or hardware component – and let us refer
to the sum total of all other entities that could (in principle) affect its behavior
as its operational environment. We differentiate the notion of operational envi-
ronment from that of context by drawing a distinction between potentiality and
relevance. While all aspects of the operational environment have the potential to
influence the behavior of the reference agent, only a subset are actually relevant
to the reference agent’s behavior. In formulating a model of context-awareness
we need to focus our attention on how this relevant subset is determined. To
date, most of the research on context-awareness considers a restricted context,
i.e., context is what can be sensed locally, e.g., location, temperature, connec-
tivity, etc. However, distant entities can affect the agent’s behavior, and the size
of the zone of influence depends upon the needs of the specific application. The
scope and quality of the information gathered about the operational environment
affect the cost associated with maintaining and accessing context information.
These suggest that a general model of context-awareness must allow an agent to
work with a context that may extend beyond its immediate locality (i.e., support
node or host) while also enabling it to control costs by precisely specifying what
aspects of the operational environment are relevant to its individual needs as
they change over time.

A model of context-awareness must be expansive, i.e., it must recognize the
fact that distant entities in the operational environment can affect an agent’s
behavior [4]. This requirement states that one should not place a priori limits
on the scope of the context being associated with a particular agent. While
specific instantiations of the model may impose restrictions due to pragmatic
considerations having to do with the cost of context maintenance or the nature
of the physical devices, application needs are likely to evolve with time. As a
consequence, fundamental assumptions about the model could be invalidated. To
balance out the expansive nature of the model and to accommodate the need for
agents to exercise control over the cost of context maintenance, we also require
the model to support a notion of context that exhibits a high degree of specificity.
In other words, it must be possible for context definitions to be tailored to the
needs of each individual agent. Furthermore, as agents adapt, evolve, and alter
their needs, context definitions also should be amenable to modification in direct
response to such developments.
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Expansiveness and specificity are central to achieving generality. They are
necessary but not sufficient features of the context-aware computing paradigm
that consider the way in which the operational environment relates to an agent’s
notion of context, i.e., the distinction between potentiality and relevance. They
fail to consider the manner in which the agent forms and manipulates its own
notion of context. The only way an agent can exercise control over its context
is to have an explicit notion of context. This gives the agent the power to de-
fine its own context and to change the definition as it sees fit. It also formalizes
the range of possible interactions between the agent and its operational envi-
ronment. Consequently, context definition has to be an identifiable element of
the proposed model and must capture the essential features of the agent/context
interaction pattern. Separation of concerns suggests that an agent’s context spec-
ification be separable from its behavior specification. The agent behavior may
result in changes to the definition of context, but the latter should be readily
understood without one needing to examine the details of the agent behavior.
This requirement rules out the option of having to derive context from the ac-
tions of the agent. This distinction is important because many systems interact
with and learn about their operational environment without actually employing
the context-aware paradigm. Finally, context maintenance must be transparent.
This implies that the definition of context must be sufficiently abstract to free
the agent of the operational details of discovering its own context and sufficiently
precise for some underlying support system to be able to determine what the
context is at each point in time.

To illustrate our perspective on context-aware computing, let us examine the
case of an application in which contextual information plays an important role,
but the criteria for being classified as employing the context-aware paradigm are
not met. Consider an agent that receives and sends messages, learns about what
other agents are present in its environment through the messages it receives, and
uses this information to send other messages. Indeed the context plays an impor-
tant role in what the agent does, and the agent makes decisions based upon the
knowledge it gains about its operational environment. More precisely, the agent
implicitly builds an acquaintance list of all other agents in the region through a
gossiping protocol that distributes this information, and it updates its knowledge
by using message delivery failures that indicate agent termination or departure.
However, we do not view this as an instance of the context-aware paradigm; the
way the agent deals with the environment may be considered extensible but it
is not specific, explicit, separable, or transparent. It is particularly instructive
to note what is required to transform this message-passing application into one
that qualifies as an instance of the context-aware paradigm.

Specificity could be achieved by having each agent exercise some judgment
regarding which other agents should or should not be included in its acquain-
tance list. Explicitness could be made manifest by having the agent include a
distinct representation of the acquaintance list in its code – a concrete repre-
sentation of its current context. Separability could be put in place by having
the code that updates the acquaintance list automatically extract agent infor-
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mation from arriving messages for placement in the acquaintance list, e.g., by
employing the interceptor pattern. Transparency requires the design to go one
step further by having the agent delegate the updating of the acquaintance list
to an underlying support infrastructure; this, in turn, demands that the def-
inition of the context be made explicit to the support infrastructure either at
compile or at run time – an evaluation procedure to establish which other agents
qualify as acquaintances and which do not suffices. The result is an application
that exhibits the same behavior but a different design style; the agent’s context
is made manifest through an interface offering access to a data structure that
appears to be local, is automatically updated, and is defined by the agent which
provides the admission policy controlling which agents in the region are included
or excluded from the list. This is not the only way to employ the context-aware
paradigm but clearly demonstrates the need for the designer to adopt a different
mind-set.

The principal objective of this paper is to explore the development of an
abstract formal model for context-aware computing; no such model is available
in the literature to date, other than a preliminary version of this work [5]. Be-
cause our ultimate goal is to achieve a better understanding of the essence of
the context-aware computing paradigm, we seek to achieve minimality of con-
cepts and elegance of notation while remaining faithful to the formative assump-
tions that define our perspective on context-awareness. The resulting model is
called Context UNITY and has its roots in our earlier formal work on Mobile
UNITY [6,7] and in our experience with developing context-aware middleware
for mobility. Context UNITY assumes that the universe (called a system) is pop-
ulated by a bounded set of agents whose behaviors can be described by a finite
set of program types. At the abstract level, each agent is a state transition sys-
tem, and context changes are perceived as spontaneous state transitions outside
of the agent’s control. However, the manner in which the operational environ-
ment can affect the agent state is an explicit part of the program definition. In
this way, the agent code is local in appearance and totally decoupled from that
of all the other agents in the system. The context definition is an explicit part of
the program type description, is specific to the needs of each agent as it changes
over time, and is separate from the behavior exhibited by the agent. The design
of the Context UNITY notation is augmented with an assertional style proof
logic that facilitates formal reasoning about context-aware programs.

The remainder of this paper is organized as follows. The next section presents
our formalization of context-awareness in detail. In Section 3, we outline the
proof logic associated with the model. Section 4 shows how the model can express
key features of several existing context-aware systems. Conclusions appear in
Section 5.

2 Formalizing Context-Awareness

Context UNITY represents an application as a community of interacting agents.
Each agent’s behavior is described by a program that serves as the agent’s proto-
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type. To distinguish agents from each other, each has a unique identifier. Because
we aim to model context-aware systems, an agent must access its environment,
which, in Context UNITY, is defined by the values of the variables other agents
in the system are willing to expose. As described in the previous section agents
require context definitions tailored to their individualized needs. In Context
UNITY, agents interact with a portion of the operational environment defined
through a unique set of variables designed to handle the agent’s context needs.

A central aspect of Context UNITY is its representation of program state.
Three categories of variables appear in programs; they are distinct in the man-
ner in which they relate to context maintenance and access. First, a program’s
internal variables hold private data that the agent uses but does not share with
the other agents in the system. They do not affect the operational environment
of any other agent. Exposed variables store the agent’s public data; the values
of these exposed variables can contribute to the context of other agents. The
third category of variables, context variables, represent the context in which the
particular agent operates. These variables can both gather information from the
exposed variables of other agents and push data out to the exposed variables of
other agents. These actions are governed by context rules specified by each agent
and subject to access control restrictions associated with the exposed variables.

In the remainder of this section, we first detail the structure of a Context
UNITY system. We then show how programs use context variables to define a
context tailored to the needs of each particular agent and the mechanics that
allow an agent to explicitly affect its operational environment. Throughout we
provide examples using the model to reinforce each concept.

2.1 Foundational Concepts

Context UNITY represents an application as a system specification that includes
a set of programs representing the application’s component types. Fig. 1 shows
the Context UNITY representation of a System. The first portion of this def-
inition lists programs that specify the behavior of the application’s individual
agents. Separating the programs in this manner encapsulates the behavior of
different application components and their differing context needs. The Com-
ponents section of the system declares the instances of programs, or agents,
that are present in the application. These declarations are given by referring to
program names, program arguments, and a function (new id) that generates a
unique id for each agent declared. Multiple instantiations of the same program
type are possible; each resulting agent has a different identifier. The final por-
tion of a system definition, the Governance section, captures interactions that
are uniform across the system. Specifically, the rules present in this section de-
scribe statements that can impact exposed variables in all programs throughout
the system. The details of an entire system specification will be made clearer
through examples later in this section. First we describe in detail the contents
of an individual Context UNITY program.

Each Context UNITY program lists the variables defining its individual state.
The declaration of each variable makes its category evident (internal, exposed,
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System SystemName
Program ProgramName (parameters)
declare
internal — internal variable declarations
exposed — exposed variable declarations
context — context variable declarations

initially — initial conditions of variables
assign — assignments to declared variables
context
definitions affecting context variables—they can pull information from and

push information to the environment
end
. . . additional program definitions . . .
Components
the agents that make up the system

Governance
global impact statements

end SystemName

Fig. 1. A Context UNITY Specification

or context). A program’s initially section defines what values the variables are
allowed to have at the start of the program.

The assign section defines how variables are updated. These assignment
statements can include references to any of the three types of variables. Like
UNITY and its descendants, Context UNITY’s execution model selects state-
ments for execution in a weakly-fair manner – in an infinite execution, each
assignment statement is selected for execution infinitely often. In the assign-
ment section, a program can use simple assignment statements, transactions,
or reactions. A transaction is a sequence of simple assignment statements which
must be scheduled in the specified order with no other (non-reactive) statements
interleaved. They capture a form of sequential execution whose net effect is a
large-grained atomic state change. In the assign section of a program, a transac-
tion uses the notation: 〈s1; s2; . . . ; sn〉. A reaction allows a program to respond
to changes in the state of the system. A reaction is triggered by an enabling
condition Q and has the form s reacts-to Q. As in Mobile UNITY, Context
UNITY modifies the execution model of traditional UNITY to accommodate
reactions. Normal statements, i.e., all statements other than reactions, continue
to be selected for execution in a weakly-fair manner. After execution of a normal
statement, the set of all reactions in the system, forming what we call a reactive
program, executes until it reaches fixed-point. During the reactive program’s exe-
cution, the reactive statements are selected for execution in a weakly-fair manner
while all normal statements are ignored. When the reactive program reaches a
fixed-point, the weakly-fair selection of normal statements continues.

In Context UNITY, an agent’s behavior is defined exclusively through its
interaction with variables. To handle context interactions, Context UNITY in-
troduces context variables and a special context section that provides the rules
that manage an agent’s interaction with its desired context. Specifically, the
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context section contains definitions that sense information from the operational
environment and store it in the agent’s context variables. The rules can also allow
the agent to affect the behavior of other agents in the system by impacting their
exposed variables. The use of this special context section explicitly separates
the management of an agent’s context from its internal behavior.

Two prototypical uses of the context section lie at the extremes of sensing
and affecting context. First, a program’s context definition may only read the
exposed variables of other programs but not affect the variables’ values. When
used in such a way, we refer to the context variables as sentient variables be-
cause they only gather information from the environment to build the agent’s
context. In the other extreme case, a program can use its context variables to
disperse information to components of the environment. From the perspective
of the reference agent, this affects the context for other agents, and we refer
to context variables used in this manner as impact variables. While these two
extremes capture the behavior of context-aware systems in the most common
cases, the generality of Context UNITY’s context specification mechanism al-
lows it to model a variety of systems that fall between these two extremes. The
examples discussed in Section 4 demonstrate this in more detail.

The acquaintance list application introduced in the previous section provides
a list of nearby coordination participants. Several context-aware systems in the
literature, e.g., Limone [8], use this data structure as a basis for more sophisti-

System AcquaintanceManagement
Program Agent1
declare
exposed id ! agent id : agent id

λ ! location : location
context Q : set of agent id

assign
. . . definition of local behavior . . .

context
define — define Q based on desired properties of acquaintance list members

end
Program Agent2
declare
exposed id ! agent id : agent id

λ ! location : location
context Q : set of agent id

assign
. . . definition of local behavior . . .

context
define — define Q based on different restrictions

end
Components
Agent1[new id], Agent1[new id], Agent2[new id]

end AcquaintanceManagement

Fig. 2. A Context-Aware System for Acquaintance Maintenance



A Formal Treatment of Context-Awareness 19

cated coordination mechanisms. The acquaintance list is defined by dynamically
changing needs of a reference agent. Fig. 2 shows a Context UNITY specification
for an application that relies on the usage of an acquaintance list. This system
consists of three agents of two differing types. Each agent stores its unique agent
id in an exposed variable named agent id that is available to other programs.
Because we are modeling systems that entail agent mobility, each agent also has
a variable named location that stores its location. The movement of the agent
is outside this example; it could occur through local assignment statements to
the location variable (in the assign section of the individual program) or even
by a global controller (via the Governance section of the system). Both id
and λ are local handles for built-in variables whose names are agent id and lo-
cation, respectively. We discuss these built-in variables in more detail later in
this section. Each program type has individualized behavior defined via the as-
sign section that may use additional context variables or definitions. In this
example, we are most concerned with the maintenance of the acquaintance list.
Each agent declares a context variable Q of type set that will store the con-
tents of the acquaintance list. Different program types (in this case, Agent1 and
Agent2 ) employ different eligibility qualification criteria for the members of the
acquaintance list, exemplified in the context section of each program type. This
example shows a high-level definition of a context variable. In the acquaintance
management specification, each program’s context section contains a rule that
describes how the context variable Q is updated. Later in this section we will
show exactly what this rule entails. First however, we expound on the structure
of Context UNITY exposed variables.

ι the variable’s unique id
π the id of the owner agent
η the name
τ the type
ν the value
α the access control policy

Fig. 3. Variable Components

Exposed Variables Revisited. In
UNITY and many of its descendants,
variables are simply references to values.
In Context UNITY, both internal and
context variables adhere to this standard.
However, references to exposed variable
appearing in the program text are refer-
ences to more complex structures needed
to support context-sensitive access within
an unknown operational environment.
These handle names have no meaning outside the scope of the program. A com-
plete semantic representation of exposed variables is depicted in Fig. 3. Each
exposed variable has a unique id ι – uniqueness could be ensured by making
each variable unique within an agent and combining this with the unique agent
id. This unique id is used in the context interaction rules to provide a handle to
the specific variable. The agent owning the exposed variable, π or type agent id,
also appears in the semantic structure and allows an exposed variable to be se-
lected based on its owner. An exposed variable’s name, η, provides information
about the kind of data the variable contains; the name of an exposed variable
can be changed by the program’s assignment statements. The type τ reflects
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the exposed variable’s data type and is fixed. An exposed variable’s value, ν,
refers to the data value held by the variable. Programs refer to the value when
assigning to the variable or when accessing the value the variable stores. The
value of an exposed variable can be assigned in the assign section or can be
determined by a different program’s impact on its environment. The program
can control the extent to which its exposed variables can be modified by others
using the access control policy described below.

Modeling Access Control. The final component of an exposed variable in
Context UNITY, α, stores the variable’s access control policy. Because many
context-aware systems and applications use some form of access restriction, Con-
text UNITY provides a generalized mechanism for modeling access control. An
access policy determines access based on properties of the particular agent ac-
cessing the variable. The access control policy determines both the readability
and writability of the particular variable on a per-agent basis. The function α
takes as arguments credentials provided by the reference agent and returns the
set of allowable operations on this variable, e.g., {r, w} signifies permission to
both read and write the particular exposed variable. Because Context UNITY as-
sociates an access control policy with each variable, it models the finest-grained
access restrictions possible in a context-aware application. This model can be
tailored to the needs of current context-aware systems, including those that uti-
lize a trusted third party for authentication.

Built-in Variables. To ease representation of context-aware interactions, Con-
text UNITY programs contain four built-in exposed variables. In Context
UNITY, these variables are automatically declared and have default initial val-
ues. An individual program can override the initial values in the program’s ini-
tially section and can assign and use the variables throughout the assign and
context sections. The first of these variables has the name “location” and fa-
cilitates modeling mobile context-aware applications by storing the location of
the program owning the variable. This variable is exposed and available to other
programs to use. An example use of this variable was shown in the system in
Fig. 2. The definition of location can be based on either a physical or logical
space and can take on many forms. This style of modeling location is identical
to that used in Mobile UNITY. The second of Context UNITY’s built-in vari-
ables is also exposed and has the name “type”, and its value is the program’s
name (e.g., “Agent1” or “Agent2” in the example system). As we will see, the
use of this variable can help context variables select programs based on their
general function. The third of the built-in variables has the name “agent id”
and holds the unique identifier assigned to the agent when the agent is instan-
tiated in the Components section. The final built-in variable is internal and
has the local handle “credentials”. It is used in Context UNITY interactions to
support access control restrictions. Specifically, the variable stores a profile of
attributes of the program that are provided to the access control policies of the
exposed variables of other programs. These credentials are available to access
control policies when determining whether or not this program has access to a
particular exposed variable.
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Context Specification. Context-aware applications rely on conditions in the
environment for adaptation. Context UNITY facilitates specification of context
interactions through the use of context variables that use the exposed variables
of other agents to provide exactly the context that a reference agent requires.
In a Context UNITY program, the context section of a program contains the
rules that dictate restrictions over the operational environment to define the
context over which an agent operates. Additionally, the rules in the context
section allow the agent to feed back information into its context. Structuring the
context section as a portion of each program allows agents to have explicit and
individualized interactions with their contexts.

As indicated in the beginning of this section, due to the unpredictable na-
ture of the dynamic environments in which context-aware agents operate, their
context definitions require a mechanism to handle their lack of a priori knowl-
edge about the operational environment. In Context UNITY, we introduce non-
deterministic assignment statements to the definition of context. Specifically,
the non-deterministic assignment statement x := x′.Q assigns to x a value x′

non-deterministically selected from all values satisfying the condition Q [9]. A
program’s context rules define how an agent can access and interact with the
exposed variables of other agents. It can select which other agents’ variables
affect its behavior by employing non-deterministic assignments and existential
quantification. The flexibility of this selection mechanism allows agents that con-
tribute to the context to be selected based on attributes defined in their exposed
variables. For example, in a mobile context-aware application, an agent can use
the built-in Context UNITY location variable to store its current physical loca-
tion. Whenever the component moves, the agent updates the location variable
using an assignment statement in the local assign section. Another agent can use
relative distance to identify which other agents are to contribute to its context.
We refer to this selection of agents based on their properties as context-sensitive
program selection.

Context UNITY wraps the use of non-deterministic assignment in a special-
ized notation for handing context-aware interactions. To manage its interaction
with context information, a program uses statements of the following form in its
context section:

c uses quantified variables
given restrictions on variables
where c becomes expr

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .
[reactive]

This expression, which we refer to as a context rule, governs the interactions
associated with the context variable c. A context rule first declares existentially
quantified dummy variables to be used in defining the interactions with the ex-
posed variables that relate to the context variable c. The scope of these dummy
variables is limited to the particular context rule that declares them. The ex-
pression can refer to any exposed variables in the system, but referring to other
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programs’ exposed variables explicitly requires the program to have advance
knowledge about the other components it will encounter over time, which pro-
grams rarely have. Typically, context-aware applications rely on opportunistic
interactions that cannot be predetermined. To capture this style of interaction
in Context UNITY, the exposed variables that contribute to the context rule
are selected in a context-sensitive manner using the restrictions provided in the
rule’s definition. As one example, because a wireless context-aware application
contains many agents that may or may not be connected, the restrictions used
in a context rule for a particular application must account for the connectivity
restrictions imposed by the operational environment.

Given the set of exposed variables selected in accordance with the restric-
tions, the context rule can define an expression, expr, over the exposed variables
and any locally declared variables (internal, exposed, or context). The result of
evaluating this expression is assigned to the context variable. The context rule
can also define how this context variable impacts the operational environment.

The execution of each context rule can optionally be declared reactive,
which dictates the degree of consistency with which the context rule reflects
the environment. If a context rule is declared reactive, it becomes part of the
system’s reactive program that is executed to fixed-point after the execution of
each normal statement. Using a reaction guarantees that the context informa-
tion expressed by the rule remains consistently up to date because no normal
statements can execute until the reactive program reaches fixed-point. If not
declared reactive, the context rule is a normal, unguarded statement and part
of Context UNITY’s normal execution model.

Within a context rule, if no explicit restrictions are placed on the referenced
exposed variables, two restrictions are automatically assumed. The first requires
that the variable referenced be an exposed variable in its owner program since
only exposed variables are accessible from other programs. The second implicit
restriction requires that the program whose context uses a particular exposed
variable must satisfy the variable’s access control policy. Consider the following
simple context rule that pulls the value out of some exposed variable, places the
value in the context variable c, and deletes the value from the exposed variable
used. The statement is a reactive statement that is triggered when a is larger
than the value of some local variable x:

c uses a
given a > x
where c becomes a

0 impacts a
reactive

This reactive construct makes the rule part of the system’s set of reactive state-
ments. This context rule corresponds to the following formal definition, which
includes the two implicit restrictions on the exposed variable a as discussed
above:
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〈a : a = a′.(var[a′] > x ∧ {r, w} ⊆ var[a′].α(credentials))
:: (c := var[a].ν || var[a].ν := 0) reacts − to true

〉1

In this definition, we introduce var, a logical table that allows us to refer to
all variables in the system, referenced by the unique variable id. When selecting
the variable a from the table, the statement above really selects its variable id,
which serves as a reference to a specific entry in the table var. In this statement,
for instance, the exposed variable a is non-deterministically selected from all
exposed variables whose access control policies allow this agent access to read
and write the exposed variable that the dummy variable a refers to. The latter
is determined by applying the variable’s access control policy to this agent’s
credentials. The set returned by this application can contain any combination
of r and w, where the presence of the former indicates permission to read the
variable, and the presence of the latter indicates permission to write the variable.
After selecting the particular exposed variable to which a refers, the rule contains
two assignments. The first assigns the value stored in a (i.e., var[a].ν) to the
context variable c. The second assignment captures the fact that the context
rule can also impact the environment, in this case by zeroing out the exposed
variable used.

The power of the context-sensitive selection of exposed variables becomes
apparent only when the restrictions within the context rules are used. Within
the restrictions, the context rule can select exposed variables to be used based
on the exposed variables’ names, types, values, owning agent, or even based
on properties of other variables belonging to the same or different agents. To
simplify the specification of these restrictions, we introduce a few new pieces of
notation. Referring to the system-wide table of variables (i.e., var) is cumbersome
and confusing because the table is both virtual and distributed. For this reason,
context rules refer directly to indexes in the table instead. Specifically, in this
notation, we allow the variable id a to denote the value of the variable in var
for entry a, i.e., var[a].ν. To access the other components of the variable (e.g.,
name), we abuse the notation slightly and allow a.η to denote var[a].η. Because a
common operation in context-sensitive selection relies on selecting variables from
the same program, we also introduce a shorthand for accessing a variable by the
combination of name and program. To do this, when declaring dummy variables,
a context rule can restrict both the names and relative owners of the variables.
For example, the notation: x ! name1, y ! name2 in p; z ! name3 in q refers to three
variables, one named name1 and a second named name2 that both belong to the

1 The three-part notation 〈op quantified variable : range :: expression〉 used
throughout the text is defined as follows: The variables from quantified variables
take on all possible values permitted by range. If range is missing, the first colon is
omitted and the domain of the variables is restricted by context. Each such instan-
tiation of the variables is substituted in expression, producing a multiset of values
to which op is applied, yielding the value of the three-part expression. If no instan-
tiation of the variables satisfies range, the value of the three-part expression is the
identity element for op, e.g., true when op is ∀ or zero if op is “+” .
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same agent whose agent id can be referenced as p. The third variable, z, must
be named name3 and located in program q. q may or may not be the same as p,
depending on further restrictions that might be specified. Additional variables
can be listed in this declaration; they are grouped by program and separated by
semicolons. If no combination of variables in the system satisfies the constraints,
then the dummy variables are undefined, and the rule reduces to a skip.

As a simple example of a context rule, consider a program with a context
variable called c that holds the value of an exposed variable with the name data
and located on an agent at the same location as the reference. This context
variable simply represents the context, and it does not change the data stored
on the agent owning the exposed variable. To achieve this kind of behavior, the
specification relies on the existence of the built-in exposed variable with the
name location, locally referred to as λ. The context rule for the context variable
c uses a single exposed variable that refers to the data that will be stored in c.
In this example, we leave the rule unguarded, and it falls into the set of normal
statements that are executed in a weakly-fair manner.

c uses d ! data, l ! location in p
given l = λ
where c becomes d

Formally, using the above notation is equivalent to the following expression:

〈d, l : (d, l) = (d′, l′).({r} ⊆ var[d′].α(credentials) ∧ {r} ⊆ var[l′].α(credentials)∧
var[d′].η = data ∧ var[l′].η = location∧
var[d′].π = var[l′].π ∧ var[l′].ν = λ.ν)

::c := var[d].ν
〉

Because the expression assigned to the context variable c is simply the value of
the selected exposed variable, the most interesting portion of this expression is
the non-deterministic selection of the exposed variables. The formal expression
non-deterministically selects a variable to pull data from that satisfies a set of
conditions. These conditions rely on the selection of a second exposed variable
that stores the program’s location. The first line of the non-deterministic selec-
tion checks the access control function for each of the variables to ensure that
this agent is allowed read access given its credentials. The second line restricts
the names of the two variables. The variable d being selected must be named
data, according to the restrictions provided in the rule. The location variable is
selected based on its name being location. The final line in the non-deterministic
selection deals with the locations of the two variables. The first clause ensures
that the two variables (d and l) are located in the same program. The second
clause ensures that the agent that owns these two variables is at the same loca-
tion as the agent defining the rule.

To show how these expressions can be used to facilitate modeling real-world
context-aware interactions, we revisit the acquaintance list example from earlier
in the section. More extensive examples will be discussed in Section 4.

In Fig. 2, we gave only a high level description of the context rules required
to define an agent’s acquaintance list. To define the membership qualifications
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exactly, the agent uses a context rule that adds qualifying agents to the context
variable Q that stores the acquaintance list. In this particular case, assume that
the program wants to restrict the acquaintance list members to other agents
within some predefined range. This range is stored in a local variable whose
local handle is referred to as range. The acquaintance list context variable can
be defined using the following rule:

Q uses l ! location in a
given |l − λ| ≤ range
where Q becomes Q ∪ {a}
reactive

This expression uses the two handles range and λ to refer to local variables that
store the maximum allowable range and the agent’s current location, respectively.
This statement adds agents that satisfy the membership requirements to the
acquaintance list Q one at a time. Because it is a reactive statement that is
enabled when an agent is within range, the rule ensures that the acquaintance list
remains consistent with the state of the environment. As a portion of the reactive
program that executes after each normal statement, this context rule reaches
fixed-point when the acquaintance list contains all of the agents that satisfy the
requirements for membership. An additional rule is required to eliminate agents
that might still be in Q but are no longer in range:

Q uses l ! location in a
given |l − λ| > range
where Q becomes Q − {a}
reactive

Governing Universal Behaviors. Fig. 1 showed that the final portion of
a Context UNITY system specification is a Governance section. It contains
rules that capture behaviors that have universal impact across the system. These
rules use the exposed variables available in programs throughout the system to
affect other exposed variables in the system. The rules have a format similar to
the definition of a program’s local context rules except that they do not affect
individual context variables:

use quantified variables
where restrictions on quantified variables

expr1 impacts exposed variable1

expr2 impacts exposed variable2

. . .

As a simple example of governance, imagine a central controller that, each time
its governance rule is selected, non-deterministically chooses an agent in the
system and moves it, i.e., it models a random walk. This example assumes a one-
dimensional space in which agents are located; essentially the agents can move
along a line. Each agent’s built-in location variable stores the agent’s position on
the line, and another variable named direction indicates which direction along the
line the agent is moving. If the value of the direction variable is +1, the agent
is moving in the positive direction along the line; if the value of the direction
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variable is −1, the agent is moving in the negative direction. We arbitrarily
assume the physical space for movement is bounded by 0 on the low end and 25
on the upper end. The governance rule has the following form:

use d ! direction, l ! location in p
where l + d impacts l

(if l + d = 25 ∨ l − d = 0 then − d else d) impacts d

The non-deterministic selection clause chooses a d and l from the same pro-
gram with the appropriate variable names. The first of the impact statements
moves the agent in its current direction. The second impact statement switches
the agent’s direction if it has reached either boundary. The rules placed in the
Governance section can be declared reactive, just as a local program’s context
rules are. The formal semantic definition of context rules in the Governance
section differs slightly from the definition outlined above in that the governance
rules need not account for the access control policies of the referenced exposed
variables. This is due to the fact that the specified rules define system-wide in-
teractions that are assumed, since they are provided by a controller, to be safe
and allowed actions. As an example, the formal definition for the rule described
above would be:

〈d, l : (d, l) = (d′, l′).(var[l′].η = location ∧ var[d′].η = direction∧
var[l′].π = var[d′].π)

:: var[l].ν := var[l].ν + var[d].ν
||var[d].ν := −var[d].ν if l + d = 25 ∨ l + d = 0

〉

Using the unique combination of independent programs, their context rules,
and universal governance rules, Context UNITY possesses the ability to model a
wide-variety of applications in the area of context-aware computing. We demon-
strate this in Section 4 by providing snippets of Context UNITY systems required
to model applications taken from the context-aware literature. First, in the next
section, we briefly overview the proof logic associated with the Context UNITY
model.

3 Proof Logic

Context UNITY has an associated proof logic largely inherited from Mobile
UNITY [6], which in turn builds on the original UNITY proof logic [10]. Pro-
gram properties are expressed using a small set of predicate relations whose
validity can be derived directly from the program text, indirectly through trans-
lation of program text fragments into Mobile UNITY constructs, or from other
properties through the application of inference rules. In all of these systems, the
fundamental aspect of proving programs correct deals with the semantics of indi-
vidual program statements. UNITY contains only standard conditional multiple
assignment statements, while both Mobile UNITY and Context UNITY extend
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this model with reactive statements and transactions. Context UNITY also adds
non-deterministic assignment statements. In all of these models, proving indi-
vidual statements correct starts with the use of the Hoare triple [11].

For the normal statements in UNITY, a property such as:

{p}s{q} where s in P

refers to a standard conditional multiple assignment statement s exactly as it
appears in the text of the program P . By contrast, in a Mobile UNITY or Context
UNITY program, the presence of reactive statements requires us to use:

{p}s∗{q} where s ∈ N
where N denotes the normal statements of P while s∗ denotes a normal state-
ment s modified to reflect the extended behavior resulting from the execution
of the reactive statements in the reactive program R consisting of all reactive
statements in P . The following inference rule captures the proof obligations as-
sociated with verifying a Hoare triple in Context UNITY under the assumption
that s is not a transaction:

{p}s{H}, H �→ (FP(R) ∧ q) in R
{p}s∗{q}

The first component of the hypothesis states that, when executed in a state
satisfying p, the statement s establishes the intermediate postcondition H. This
postcondition serves as a precondition of the reactive program R, that, when
executed to fixed-point, establishes the final postcondition q. The “in R” must
be added because the proof of termination is to be carried out from the text of
the reactive statements, ignoring other statements in the system. This can be
accomplished with a variety of standard UNITY techniques. It is required that
the predicate H leads to a fixed-point and q in the reactive program R. This
proof obligation (i.e., H �→ (FP(R) ∧ q) in R) can be proven with standard
techniques because R is treated as a standard UNITY program.

For transactions of the form 〈s1; s2; . . . ; sn〉 we can use the following inference
rule before application of the one above:

{a}〈s1; s2; . . . sn−1〉∗{c}, {c}s∗
n{b}

{a}〈s1; s2; . . . sn〉{b}
where c may be guessed at or derived from b as appropriate. This represents
sequential composition of a reactively-augmented prefix of the transaction with
its last sub-action. This rule can be used recursively until we have reduced the
transaction to a single sub-action. Then we can apply the more complex rule
above to each statement. This rule may seem complicated, but it represents
standard axiomatic reasoning for ordinary sequential programs, where each sub-
statement is a predicate transformer that is functionally composed with others.

Finally, Context UNITY introduces the notion of non-deterministic assign-
ment to the Mobile UNITY proof logic. The proof obligation of these non-
deterministic assignments differs slightly from that of the standard assignment
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statements. Given the property {p}s{r} in UNITY, if the statement s is a non-
deterministic assignment statement of the form x := x′.Q(x′), then the inference
rule describing the associated proof obligation for the statement s has the form:

{p ∧ ∃x′ :: Q(x′)}s{∀x′ : Q(x′) :: r}
{p}s{r}

Special care must be taken to translate Context UNITY context rules from
both the local program context sections and the Governance section to stan-
dard notation (i.e., to the appropriate normal or reactive statements) before
applying the proof logic outlined here. Once translated as described in the pre-
vious section, proof of the system can be accomplished directly by applying the
rules outlined above.

To prove more sophisticated properties, UNITY-based models use predicate
relations. Basic safety is expressed using the unless relation. For two state pred-
icates p and q, the expression p unless q means that, for any state satisfying
p and not q, the next state in the execution must satisfy either p or q. There
is no requirement for the program to reach a state that satisfies q, i.e., p may
hold forever. Progress is expressed using the ensures relation. The relation p
ensures q means that for any state satisfying p and not q, the next state must
satisfy p or q. In addition, there is some statement in the program that guaran-
tees the establishment of q if executed in a state satisfying p and not q. Note that
the ensures relation is not itself a pure liveness property but is a conjunction
of a safety and a liveness property; the safety part of the ensures relation can
be expressed as an unless property. In UNITY, these predicate relations are
defined by:

p unless q ≡ 〈∀s : s in P :: {p ∧ ¬q}s{p ∨ q}〉
p ensures q ≡ (p unless q) ∧ 〈∃s : s in P :: {p ∧ ¬q}s{q}〉

where s is a statement in the program P . Mobile UNITY and Context UNITY
use the same definitions since all distinctions are captured in the verification
of the Hoare triple. Additional relations may be derived to express other safety
(e.g., invariant and stable) and liveness (e.g., leads-to) properties.

4 Patterns of Context-Awareness

Much published research acknowledges the need for applications that rapidly
adapt to changes in resource availability and the operational environment. As a
result, a number of researchers sought to provide context-aware software systems
designed to function in a variety of operating scenarios. These systems vary
in their approaches to managing context; models that underlie context-aware
systems range from a simple client-server model in which servers provide context
information directly to clients, to sophisticated tuple space coordination models
in which the details of communicating context information is transparent to the
application. In this section, we examine a representative set of context-aware
systems found in the literature, abstract their key features, and suggest ways to
model them in Context UNITY.
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4.1 Simple Context Interactions

Initial work in context-aware computing resulted in the development of applica-
tions that use relatively simple context definitions. Such systems often separate
concerns related to providing and using context. Many systems consist of kiosks,
entities which provide context information to visitors, which use context and
state information to adapt their behavior.

Applications exhibiting the characteristics of the simple kiosk-visitor interac-
tion pattern include context-aware office applications such as Active Badge [12]
and PARCTab [13]. In these systems, personnel carry devices that periodically
communicate a unique identifier via a signal to fixed sensors, allowing the loca-
tion of the carrier to be known. An application uses the location information to
adapt the office environment accordingly in response to the changing location of
the carrier, e.g., by forwarding phone calls to the appropriate office or changing
the applications available on a workstation. Another type of context-aware ap-
plications that use simple context interactions relate to the development of tour
guides, e.g., Cyberguide [14] and GUIDE [15]. In these applications, tourists
carry mobile devices equipped with context-aware tour guide software. As a
tourist moves about in a guide-friendly area, his display is updated according
to locally stored preferences combined with context information provided by
stationary access points located at points of interest.

In all of the context-aware applications described above, a particular type of
entity provides context information and another type reads and uses the provided
information. Generally, one of the parties is stationary, while the other is mobile.
We can readily capture this style of interaction in Context UNITY. Agents
providing context information to other agents in the Context UNITY system
do so through the use of exposed variables. Agents obtain the provided context
information through the use of context variables, the values of which are defined
by values of selected exposed variables of context-providing agents.

Fig. 4 illustrates the interaction between a visitor and kiosks in a simple
museum guide system. In this system, each stationary museum kiosk provides
information about an exhibit at its location using an exposed variable. A kiosk in
the southeast corner of the museum gives information about a painting through
its exposed variable e named “painting” with a textual description of the paint-
ing as the variable’s value. The kiosks in the northeast and northwest corners of
the museum each provide information about a certain sculpture by naming its
exposed variable e “sculpture,” and assigning to the variable a short textual de-
scription of the work of art at that location. As a particular visitor moves around
the room, his context variable, c, defined to contain a co-located sculpture ex-
hibit, changes in response to the available context. If new context information
about a sculpture is available, the visitor’s display is updated to show the in-
formation. The figure depicts what happens when a visitor walks around the
museum. The initial position of the visitor agent is depicted by the dashed box
labeled “Agent.” As the visitor moves around the museum in the path indicated
by the dotted arrow, the context variable c is updated. Specifically, when the
visitor reaches the northeast corner of the museum, the context variable c is
updated to contain information about the sculpture at that location. Such an
application can be specified in the Context UNITY notation, as shown below.
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Fig. 4. A simple guide system in Context UNITY

For brevity, we show only the most interesting aspect of the system specification,
which is a visitor’s context rule:

c uses e ! sculpture, l ! location in p
given l = λ
where c becomes e

More complex patterns of interaction are frequently utilized in the devel-
opment of context-aware systems. In some systems, for instance, kiosks provide
context information to a stationary context manager, and the context manager
communicates directly with visitors to adapt their behavior accordingly given
the current conditions of the environment. An instance of this pattern of inter-
action is found in the Gaia operating system [16], which manages active spaces.
An active space is a physical location in which the physical and logical resources
present can be adapted in response to changes in the environment. A typical
interaction in an active space is as follows: a user enters the active space and
registers with the context manager, which uses information about the user and
the environment to perform appropriate actions, e.g., turn on a projector and
load the user’s presentation. Such a system can be modeled in Context UNITY
similarly to those systems described above that exhibit simple context interac-
tions: users are providing context information to the context manager through
the use of exposed variables, and the context manager uses context variables to
obtain context information and react accordingly.
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4.2 Security-Constrained Context Interactions

Security is a major concern in the development of all modern software systems,
including those supporting context-awareness. In several systems, multi-level
security mechanisms are provided through the use of domains. A domain provides
a level of security and isolates the available resources according to the level
of security offered. Agents authorized to operate within that domain have the
ability to act upon all resources within a domain, and a domain may have an
authorizing authority that grants and revokes entering and exiting agents’ access
rights. Examples of systems exhibiting such characteristics include the Gaia file
system [16] and the multi-level access control proposed by Wickramasuriya and
Venkatasubramanian [17].

Waiting Room Exam Area
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Fig. 5. An example security-constrained context-aware application in Context UNITY.
In the waiting room domain, which offers a low level of security in its exposed variable
L, the patient’s sensitive information about symptoms is protected from inclusion in
the domain by the symptom variable’s access control function. The shading on the
oval labeled s indicates that the symptom variable is not accessible to anyone in the
environment. As the patient moves to the exam area domain offering high level security,
the patient’s domain security level is updated immediately, as indicated by the arrow
labeled “reacts.” As a result of the changed security level, a second reaction is triggered
whose effect is to alter the access control function of the symptom variable s to allow
the value to be available to those in the exam area domain.

Fig. 5 illustrates an example use of such an interaction style. In the example,
a patient at a doctor’s office must provide information about himself in order to
receive treatment. Some of the information provided is fairly public knowledge
and can be viewed by the receptionist and other patients, e.g., name and con-
tact information. Other information is highly sensitive and personal, e.g., health
history, and should only be shared with a doctor. To facilitate this kind of inter-
action, the doctor’s office is divided into two areas that provide different levels of
privacy: the waiting room and the exam area. The waiting room is a public space
(low-security), since the receptionist and other patients in the waiting room can
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view the information provided therein. The exam area is private (high-security),
since only the patient and doctor can view the information.

To describe such applications in Context UNITY, domains could reveal their
security level using an exposed variable L named “security level.” Each patient
agent uses a context rule for its context variable L to discover the level of security
offered by the domain in which it is located. Because the definition is built to
be strongly consistent using a reactive statement, the agent’s perception of the
security level offered by its current domain is guaranteed to be accurate and up
to date. Each patient provides his name, contact information, and symptoms
through the use of exposed variables n, c, and s. A patient controls how his
information is made available through the use of each variable’s access control
function. This access control function can be changed during the execution of the
program to reflect the agent’s changing data protection needs. Using a reaction,
it is possible to ensure that the access control function is immediately changed
to reflect a change in the security level as soon as a new domain (and hence, a
new level of security) is entered.

4.3 Tailored Context Definitions

Often, the amount of context information available to a context-aware agent
grows large and unmanageable. To avoid presenting an agent with an overwhelm-
ing amount of context in such a scenario, it is desirable to limit the amount of
context information that the agent “sees” based on properties of its environment.
An example of a context-aware system that does just this is EgoSpaces [3], a
middleware for use in ad hoc networks. At the heart of EgoSpaces is the view con-
cept, which restricts an agent’s context according to the agent’s individualized
specification. A view consists of constraints on network properties, the agents
from which context is obtained, and the hosts on which such agents reside. These
constraints are used to filter out unwanted items in the operational environment
and results in presenting the agent with a context (view of the world) tailored
to its particular needs.

In a general sense, systems such as EgoSpaces consist of possibly mobile
agents that are both providers and users of context, and a context management
strategy that is performed on a per-agent basis. An individualized context is
managed on behalf of each agent by matching items from the entire operational
environment against the restrictions provided in the view definition, and present-
ing the result to the agent as its context. Such a system can be readily expressed
in Context UNITY. To act as a context provider, an agent generates pieces of
context information and places them in an exposed variable, a tuple space, in
the case of EgoSpaces, i.e., a data repository consisting of tuples that the agent
wishes to contribute as context. An agent provides information about itself and
properties about the host on which it resides in exposed variables named “agent
profile” and “host profile,” respectively. They allow other agents to filter the op-
erational environment according to the host and agent constraints in their view
definitions. To act as a context user, we model an agent’s view using a rule for
a context variable v named “view.” The value of v is defined to be the set of
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all tuples present in exposed tuple space variables of other reachable agents for
which the exposed agent profile properties, exposed host profile properties, and
exposed network properties of hosts match the reference agent’s constraints. An
example context rule that establishes a view v for an agent with id i to “see”
can be described as follows:

v uses lts ! tuple space, a ! agent profile, h ! host profile in i
given reachable(i) ∧ eligibleAgent(a) ∧ eligibleHost(h)
where v becomes v − (v ↑ i) ∪ lts
reactive

The function reachable encapsulates the network constraints that establish
whether an agent should or should not be considered based on network topol-
ogy data. The notation v ↑ i indicates a projection over the set v that contains
tuples owned by the agent i. It is possible to obtain such a projection since we
assume that each generated tuple has a field which identifies the owner of the
tuple using the generating agent’s unique id. In order for an agent to perform
changes to the view v and have them propagate to the correct tuple space lts
additional context rules are needed.

4.4 Uniform Context Definition

Coordination models offer a high degree of decoupling, an important design
characteristic of context-aware systems. In many distributed computing envi-
ronments, tuple spaces are permanently attached to agents or hosts. In some
models, these pieces merge together to logically form a single shared tuple space
in a manner that takes into consideration the connectivity among agents or
hosts. An agent interacts with other agents by employing content-based retrieval
(rd(pattern) and in(pattern)), and by generating tuples (out(tuple)). Of-
ten, the traditional operations are augmented with reactions that extend their
effects to include arbitrary atomic state transitions. Systems borne out of such a
tuple space coordination paradigm can be considered context-aware; an agent’s
context is managed by the tuple space system in the form of tuples in a logically
shared tuple space.

Examples of such context-aware systems are TSpaces [18], JavaSpaces [19],
MARS [20], and LIME [21]. A common characteristic of all these systems is
the fact that agents that enter in a sharing relation have the same definition of
context, i.e., the context rules are uniform and universally applied. Among the
systems we cite here, LIME is the most general, as it incorporates both physical
mobility of hosts and logical mobility of agents, and provides tuple space sharing
in the most extreme of network environments – the ad hoc network. In LIME,
agents are units of execution, mobility, and data storage, while hosts are simply
containers of agents. Hosts may be mobile, and agents can migrate from host to
host. Agents may be associated with several local tuple spaces, distinguished by
name. Since it is a passive entity, a host has no tuple space. A LIME agent’s
relevant context is determined by the logically merged contents of identically
named tuple spaces held by mutually reachable agents.
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To capture the essential features of context-aware systems having the charac-
teristics described above in Context UNITY, it suffices to endow an agent with
one exposed variable named localTS that offers its local tuple space for sharing
and a second exposed variable named sharedTS that should provide access to all
the tuples making up the current context. The value of the latter is the union of
tuples contained in exposed local tuple space variables belonging to connected
agents. Connectivity can be defined based on various properties of the network,
e.g., network hops, physical distance, etc. In MARS, only agents residing on the
same host are connected. In LIME, agents are connected when residing on the
same host or on physically connected hosts.

A final and important point to note about the modeling of such systems
is that since the shared tuple space definition is uniform across all agents, we
can capture it in the Governance section of a Context UNITY system. While
it is possible to define an agent’s context locally in its program description,
using the Governance section highlights the fact that connected agents share a
symmetric context. In addition, it is more economical for a programmer to write
a single context definition since it applies to the entire system. The resulting
context rule included in the Governance section is as follows:

use tsc ! sharedTS in a; ts l ! localTS in b
given connected(a, b)
where tsc − (tsc ↑ b) ∪ ts l impacts tsc

reactive

The result of this context rule is a tuple space shared among connected agents.
This brings to an end our discussion on how Context UNITY relates to some

of the existing models of context-awareness. The most striking observation about
this informal evaluation of the model is the simplicity exhibited by each of the
context rules that were generated in this section.

5 Conclusions

The formulation of the Context UNITY model is a case study designed to help us
gain a better understanding of the essential features of the context-aware com-
puting paradigm. A key feature of the model is the delicate balance it achieves
between placing no intrinsic limits on what the context can be while empow-
ering the individual agent with the ability to precisely control the context def-
inition. Linguistically the distinction is captured by the notions of operational
environment and context, expansive with respect to potential and specific with
respect to relevance. In the model, the two concepts have direct representations
in terms of exposed and context variables. The other fundamental characteris-
tic of the model is rooted in the systematic application of software engineer-
ing methodological principles to the specifics of context-aware computing. The
functionality of the application code is separated from the definition of context.
This decoupling is fundamental in a setting where adaptability is important – a
program design cannot anticipate the details of the various operational environ-
ments the program will encounter throughout its life time. The model enables
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this decoupling through the introduction of context rules that exploit existential
quantification and non-determinism in order to accommodate the unknown and
unexpected. Context UNITY explicitly captures the essential characteristics of
context-awareness, as we experienced then in our work and observed them in
that of others. Moreover, the defining traits of many existing models appear to
have simple and straightforward representations in Context UNITY, at least at
an abstract level. While we acknowledge that further refinements and evalua-
tion of the model are needed, all indications to date suggest that the essential
features of context-aware computing are indeed present in the model.
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