
E. Duesterwald (Ed.): CC 2004, LNCS 2985, pp. 57–72, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Data Dependence Profiling for Speculative Optimizations

Tong Chen, Jin Lin, Xiaoru Dai,Wei-Chung Hsu, and Pen-Chung Yew

Department of Computer Science, University of Minnesota
{tchen, jlin, dai, hsu, yew}@cs.umn.edu

Abstract. Data dependence analysis is the foundation to many reordering
related compiler optimizations and loop parallelization. Traditional data
dependence analysis algorithms are developed primarily for Fortran-like
subscripted array variables. They are not very effective for pointer-based
references in C or C++. With more advanced hardware support for speculative
execution, such as the advanced load instructions in Intel’s IA64 architecture,
some data dependences with low probability can be speculatively ignored.
However, such speculative optimizations must be carefully applied to avoid
excessive cost associated with potential mis-speculations. Data dependence
profiling is one way to provide probabilistic information on data dependences
to guide such speculative optimizations and speculative thread generation.
Software-based data dependence profiling requires detailed tracing of memory
accesses, therefore, could be very time consuming. In this paper, we examine
issues related to data dependence profiling, and propose various techniques to
improve the efficiency of data dependence profiling. We use the Open Research
Compiler (ORC) [15,16] to test the efficiency of our data profiling techniques.
We also study the effectiveness of data dependence profiling on data
speculative optimizations on Itanium systems. Our results show that efficient
data dependence profiling could improve the performance for data speculative
optimizations.

1 Introduction

General data dependence analyses [1, 2, 3] have been extensively used for Fortran-
like subscripted array expressions in scientific applications. However, those
algorithms are mostly inadequate for C and C++ programs due to the widely use of
pointer expressions. Existing approaches usually require a very sophisticated inter-
procedural pointer alias analysis followed by a shape analysis [4, 5, 6]. The
effectiveness of such approaches is often limited because of the increasing use of
shared libraries, complex recursive data structures, and dynamically allocated objects
in applications [7, 8].

To circumvent such limitations in compiler analyses, some architectural and
hardware schemes have been proposed to support data dependence speculation. For
example, Intel’s IA64 architecture [9] provides the advance load instruction which
can be used to schedule a load instruction across a possibly aliased store instruction.
The correctness of the execution is enforced by checking whether such dependences
exist or not at runtime. If no such dependence exists, the speculation is successful. If
such dependence does exist, the check fails and a respective recovery action will take

58 T. Chen et al

place. A similar check and recovery approach has been proposed in speculative
multithreaded processors [10, 11].

Like other speculative execution, the cost of mis-speculation is relatively high. To
make use of the data speculation, the compiler typically assumes that the mis-
speculations should be very rare. However, it is often very difficult, if not possible,
for a compiler to obtain such information based only on static analyses algorithms.
Simply ignoring all possible data dependences may cause drastic performance
degradation in some programs due to frequent mis-speculation and recovery. Like
many existing profile-guided optimizations, data dependence profiling could provide
the compiler with useful guidance on data speculative optimizations.

In this paper, we present a software-only data dependence profiling approach to
study the potential of data dependence profiling. Our data dependence profiling tool is
instrumentation based. It is platform independent and can be used for many different
types of data speculative execution. Although hardware supported data dependence
profiling [12, 13] can be more efficient, they usually are limited by the size of the
hardware table, and can only track data dependence among references in a constrained
window of execution. Our tool does not have such limitations. It could provide data
dependence information for a larger code region, not limited by program structures
such as basic blocks, function calls, or loops. The instrumentation-based profiling
approach could also provide additional flexibilities. The probability of a data
dependence edge, for example, can be defined and, consequently, collected for
different optimizations.

Alias profile has been used to guide speculative register promotion in [14].
However, the information provided by the alias profiling is usually less accurate than
that by the data dependence profiling. For example, two pointers p and q both point to
a memory block allocated from the same malloc, but access different parts of the
memory block. The alias profiling may indicate that p and q are all pointing to the
same memory objects. However, data dependence profiling is based on pair-wise
address comparison, so that p and q will not be data dependent on each other. We
have conducted experiments to show that using data dependence profile yields a
higher performance gain than using alias profile on the same speculative
optimizations. Furthermore, data dependence profile can be more useful in
parallelization than the alias profile. This is because disambiguation among array
elements requires finer granularity than a typical alias profile can provide.

Some unique features of our data dependence profiling tool are listed below:

• It detects data dependence quickly. To detect data dependence at runtime, the
addresses accessed by each pair of memory references need to be compared. Such
cross checking has a complexity of O(n2), where n is the number of references.
Other profiling approaches, such as edge profiling or value profiling, usually have
a complexity that is linear to the profiling events. Hence, efficiency is very
important in data dependence profiling, especially for very large application
programs. We use a special hash function in conjunction with some sampling
techniques to ensure data dependences can be detected very quickly.

• It handles function calls. Our profiling tool detects data dependences among
references within the same function calls, as well as data dependences across
function calls. The side effect of function calls can be summarized, and the

Data Dependence Profiling for Speculative Optimizations 59

compiler can use such information to overcome the barrier of function calls during
its optimizations.

• It handles nested loops. For loop related optimizations, it is very important to
distinguish loop-carried dependences from loop-independent dependences. In our
data dependence profiling, we associate each dependence edge with a distance
vector. Since we do not want to limit the collection of data dependence information
to the innermost loop only, the profiling tool can generate distance vectors for
nested loops simultaneously. Notice that the loops may be nested across procedure
boundaries.

• It tracks the dynamic behavior of data dependence in programs. A data dependence
edge may occur with different probabilities at runtime. However, we found that the
probability of a data dependence edge needs to be well defined according to the
consumers of the profiling information. How to collect the probability information
in profiling needs to be addressed.

We have implemented our data dependence profiling tool in Intel’s Open Research

Compiler (ORC) [15, 16]. The collected data dependence profile can be fed back to
the ORC compiler for speculative optimizations. The main contributions of this paper
are listed below:

• We present the design and the implementation of an instrumentation-based data

dependence profiling tool. This tool is capable of generating detailed data
dependence profiles (such as dependence distance vectors and dependence
probability) for nested loops. Different dependence probabilities can be defined
and profiled accordingly for different speculative optimizations.

• We discuss and evaluate several techniques to improve the efficiency of data
dependence profiling. We use a shadow memory space to conduct efficient data
dependency checking. Since profiling is merely an approximation of the program
behavior, we evaluate various implementation tradeoffs and their impact on the
quality and the efficiency of the data dependence profiling. Various sampling
techniques to reduce profiling overhead is also studied. Since data dependence is
defined among memory references, it needs to consider the program structures,
such as procedures and loops. Furthermore, an implementation of sampling
technique similar to [17] has reduced the profiling overhead from many times of
the original program execution time down to only 20%.

• We show the benefit of data dependence profiling in two optimizations: profile-
guided code scheduling and speculative partial redundancy elimination. The
performance improvement of some SPEC CPU2000 benchmarks on Itanium
machines can be as high as 32%.

The rest of this paper is organized as follows: the benefit of data dependence

profiling is shown in section 2; Section 3 describes how the data dependence profiling
is performed; The experimental results on how to reduce the overhead of data
dependence profiling are presented in section 4; Section 5 discusses the related works;
The final section provides the conclusions of this paper.

60 T. Chen et al

2 Benefit from Data Dependence Profiling

Before we describe how data dependence profiling is performed, we would like to
first show its potential benefit to two common compiler optimizations: the partial
redundancy elimination and code scheduling. Our instrumentation tool is built on top
of Intel’s Open Research Compiler (ORC). The instrumented code is then linked with
our data dependence profiling library to generate an executable file. Data dependence
is profiled when this executable file is executed with train input set. No space
reduction or sampling techniques (discussed later) are applied. The profiling results
are then fed back to ORC to guide optimizations. The optimized code is executed with
the ref input set and the execution time is measured. Our baseline is the code
compiled with ORC -O3. The reduction in the execution time is reported as
performance improvement. The machine used in our experiments is HP workstation
i2000 with one 900MHz Itanium2 processor and 2GB of main memory. Our test
programs are SPEC CPU2000 benchmarks [18].

2.1 Speculative PRE

The partial redundancy elimination (PRE) [19] includes a set of compiler
optimizations such as register promotion, strength reduction and expression
redundancy elimination. It is one of the most important optimizations in the compiler.
Data speculation has been introduced into PRE using alias profiling information [20,
21]. However, alias profiling often cannot disambiguate among array references, or
among memory references in a memory space managed by the application program
itself. It also cannot determine whether aliases generated come from the same
iteration or from different iterations. Instead, data dependence profiling often can
provide more detailed information about memory references than alias profiling.

Re d u c tio n o f C PU C ycle a n d Re t ir e d L o a d

-10%

0%

10%

20%

30%

am
m

p
ar

t

eq
ua

ke
bz

ip2 ga
p

gz
ip m

cf

pa
rs

er
tw

olf vp
r

cp u c yc le u s in g a lia s
p ro fi le

cp u c yc le u s in g
d e p e n d e n ce p ro fi le

re tire d lo a d s u s in g a l ia s
p ro fi le

re tire d lo a d s u s in g
d e p e n d e n ce p ro fi le

Fig. 1. Improvement on PRE using dependence profiling vs. alias profiling

The speculative PRE using both alias and data dependence profiling information
has been implemented on ORC. We measure its performance using pfmon [22] on
Itanium systems. The performance improvement based on alias profiling and
dependence profiling is compared in Fig. 1. The total number of CPU cycles and the
total number of loads retired are measured for each program optimized by the
speculative PRE. The result shows that data dependence profiling is able to discover

Data Dependence Profiling for Speculative Optimizations 61

more redundant loads (more retired loads reduced) and outperforms alias profiling in
the total CPU cycle.

2.2 Speculative Code Scheduling

Code scheduling aims to exploit ILP. Data speculation has been used to move loads
speculatively so that the length of a critical path can be reduced [23]. In the ORC
compiler, the speculation is based on heuristic rules. For example, a load instruction
can be moved across only two aliased store instructions (based on the alias analysis in
the compiler). We try to conduct more aggressive data speculation based on the data
dependence profiling information. Dependence edges with a probability lower than
2% are ignored. This threshold is determined by the overhead of a data mis-
speculation on Itanium2: it takes about 50 cycles to jump to and return from its
recovery code at a check failure.

Table 1. Improvement on code scheduling using dependence profiling

 Performance
improvement

Regular loads changed
to speculative loads

Failure rate

equake 8.36% 18.80% 0.34%
art 32.34% 31.32% 0.88%
Mesa 12.23% 9.14% 0.09%
Bzip 0.34% 6.81% 6.98%
Gzip 0.00% 2.45% 0.11%
parser 2.36% 2.92% 2.00%
Vortex 1.94% 4.62% 0.13%
Average 8.22% 10.8% 1.5%

The first column of Table 1 shows the performance improvement on Itanium2

using data dependence profiling information. Some floating-point benchmarks such as
art can improve performance by 32%. On average, 11% of regular load operations are
turned into speculative loads (reported in the second column) with a very low check
failure rate (i.e. less than 1% of mis-speculation) for most benchmark programs,
except bzip and parser. The major reason for the improvement is that, ORC, in fear of
the high penalty of mis-speculation, is overly conservative on scheduling data
speculative loads. With dependence profiling, more aggressive scheduling can be
performed with confidence. The failure rate observed here also shows that the
dependence profiling is quite insensitive to different input sets. When we ignore the
dependence with less than 2% probability observed with train input, only bzip2 has a
failure rate higher than 2% for the execution with ref input.

3 Instrumentation-Based Data Dependence Profiling

In this section, we address the issues related to data dependence profiling that include
detection of data dependences, handling of function calls and nested loops, and the
probability of a data dependence edge.

62 T. Chen et al

3.1 Detection of Data Dependences Using Shadow Variables

In our data dependence profiling, we focus only on the data dependence among
memory references. We ignore data dependence among registers because it can be
easily obtained by simple static analysis. Therefore, only memory references are
instrumented. The instrumented profiling instructions collect the address value and
the reference ID of each instance of memory references at runtime. The reference ID
is used to identify each static reference. It is assigned during the instrumentation so
that profiling results could be mapped back to the compiler.

Data dependence occurs when two memory references access the same memory
location in the data space. One occurrence of data dependence can be represented as a
dependence edge from the source to the sink. There are four data dependence types:
flow dependence (or true dependence), anti-dependence, output dependence, and
input dependence (or reference dependence).

It is very expensive to check data dependence based on pair-wise address
comparison, especially when the program has a large number of memory references.
The number of dynamic instances of all memory references could be very large when
there are nested loops in the program. Therefore, we use a special data structure,
called shadow memory, to efficiently detect data dependences. This is a typical trade
off between time and space.

offset

page in shadow space

data space

address of
a reference

entry size granularity

shadow
entry

mapping

 load ID store ID

Fig. 2. Detect data dependence using shadow

Shadow is used to store information during profiling. A simple hash function using
the address value maps each memory reference in the data space to its corresponding
shadow entry in the shadow memory (illustrated in Fig. 2). The shadow memory is
allocated on demand, and can be freed when the profiling for a particular region such
as a particular nested loop or a procedure of interests has completed.

Now, we describe how to detect data dependence during the profiling process.
First, each memory reference locates its shadow entry using the hash function on the
address value. The shadow entry contains the reference ID of the latest load and the
latest store operation to this memory location, or is empty when this location is
accessed for the first time. If the memory reference is a load operation, there should
be a flow dependence edge from the latest store to this load operation, and also an
input dependence edge from the latest load to this load operation. If the memory
reference is a store operation, there should be an anti dependence edge from the latest

Data Dependence Profiling for Speculative Optimizations 63

load to this store operation, and also an output dependence edge from the latest store
to this store operation. Finally, the reference ID of the current memory reference is
stored into the shadow entry, and the reference ID for previous load or store in the
shadow entry is overwritten.

Using this scheme, data dependences can be quickly detected without expensive
pair-wise address comparisons among all memory references. Using shadow space is
equivalent to a software implementation of the associative memory in [21]. We
reduce the number of pair-wise comparisons by focusing only on the execution path
of a program, i.e. only the latest load and the latest store are compared. We can use a
linked list, for each type of data dependence edges, to record the dependence edges.

3.2 Function Calls

When function calls are present in a profiled program, a dependence edge detected
between two memory references in two different procedures needs to be mapped into
the common procedure that contains both procedures. It is because, to be useful to a
compiler, a data dependence graph of a procedure should contain only the
dependences among the memory references and function calls, within the same
invocation of the procedure. However, profiling information at runtime may contain a
lot of dependences between different invocations of procedures at different call sites.
We need to sort through these data dependences and extract relevant data dependence
information. It requires the calling path information of all memory references to avoid
creating false dependence edges.

Q {
…
lo ad //ID = 2
…
 }

R {
…
s to re //ID = 1
…
 }

P

fu n c tio n c a ll

d e p e n d e n c e e d g e
d e te c te d b y
p ro filin g

d e p e n d e n c e e d g e
u sa b le to
c o m p ile rs

fa ls e d e p e n d e n c e
e d g e s w ith o u t
c a llin g c o n te x t

P {
 Q () ;
…
…
 R () ;
 }

R Q

Fig. 3. False dependences may be introduced by function calls

In Fig. 3, for example, a flow dependence from reference 2 to reference 1 occurs
only when procedure Q and R are called within procedure P. Therefore, only one
dependence edge from the corresponding call site of Q to the call site of R in the
procedure P should be generated. If we do not have calling path information for each
memory reference, we have to assume that there is a dependence edge from any call
site that may calls Q to any call site that may calls R. Here, we include all the
procedures calling Q or R directly or indirectly. They are shown as false dependence
edges in Fig. 3. The example illustrates the need for calling path information in data
dependence profiling.

64 T. Chen et al

To reduce the number of false dependence edges caused by function calls, the
calling context for each memory reference is recorded in its shadow entry. When a
dependence edge is detected, their calling contexts help to locate the common
procedure. Different kinds of calling context can be used in the dependence profiling,
resulting in different precision and efficiency.

• Fully extended call paths. Whenever a procedure is called, a new call node is

assigned for this invocation. The call path made up with such call nodes is able to
distinguish both the different call sites of a procedure and the different invocations
of a call site. It is easy to maintain the fully extended calling path at runtime: push
a new node to the call stack when a procedure is invoked, and pop the top node
from the call stack when a procedure call returns. The nodes in the call stack can
be linked backwardly and we only keep the top node in the shadow entry. When a
dependence edge occurs, the common part in their calling context can be identified.
A dependence edge should be added in the farthest common procedure from the
main procedure between the corresponding references or call sites.

• Compacted call paths. The space requirement of the fully expanded call paths
could be very high because a call site may appear in a nested loop or in a recursive
call. We could reduce the size of a call path by using only one node to represent
multiple invocations of a call site in a nested loop or in recursive calls to reduce the
space requirement. Compression techniques [24] can also be used. However,
compacted call paths may result in some false dependence edges.

For SPEC CPU2000 benchmarks, even with the train input set, it is still too costly to
fully extend all call paths. We use the compact call paths for efficiency.

3.3 Loops

When a dependence edge occurs in a loop nest, a dependence distance tells how far
the sink is away from the source of a dependence edge in terms of the number of
iterations. Optimizations may treat dependences with different distances quite
differently. It is important for a profiling tool to be able to generate distance vectors.

In order to generate a distance vector for a dependence edge, we instrument the
beginning of the loop body. Each loop is also assigned an iteration counter. This
counter is incremented when the beginning of the loop body is encountered. The
values in the iteration counters of the loops nested outside of the current reference
form an iteration vector. We store the iteration vector in the shadow. When a
dependence edge is detected, we first have to find out how the two references nested
in loops, with the consideration of the calling context discussed in the previous
section. The loop nesting information is not recorded in the shadow. The calling
context information in the shadow is used to help identifying the commonly nested
loops of the two references. The iteration vectors of the two references are aligned
and the iteration counters of their commonly nested loops are identified. The distance
vector is computed by subtracting the iteration vector in the shadow from the current
iteration vector. Dependences together with their distance vectors are recorded.
Depending on the optimizations using the profile, limited distance or the sign of the
distance, =, < or >, can be recorded instead for better efficiently.

Data Dependence Profiling for Speculative Optimizations 65

3.4 Dependence Probability

A static dependence analysis in a compiler usually can only tell whether an edge
between two memory references exists or not. However, with the dependence
profiling, we can further observe whether the data dependence rarely, frequently, or
always occur between the two memory references. Such additional information allows
a compiler optimization to deal with a data dependence edge accordingly for a better
performance. In general, a compiler can speculate only on those dependences that
rarely occur in order to avoid costly mis-speculations. Hence, such information is
especially important to speculative optimizations in a compiler.

We use a dependence probability to depict such dynamic behavior of the
dependence. There are several ways to define the dependence probability. It depends
on how such information is to be used by later speculative optimizations. Here, we
only focus on two possible definitions: the reference-based probability and the
iteration-based probability.

w 1 w 2

r: N times

e1: N 1 times e2: N 2 times

 P robability(e1) = N 1/N
 P robability(e2) = N 2/N

(a) reference-based probability
 according to the sink

iteration:
0 1 2 3 N -1

 count 1 count 1
 P robability: 2 /N

(b) iteration-based probability

Fig. 4. Different definitions of dependence probability for dependence profiling

The reference-based probability is defined as the number of the occurrences of a
dependence edge over the total number of the occurrence of the reference. The
reference may be either the source or the sink of the dependence edge. This
information gives an indication of how often a dependence edge occurs when either
the source or the sink of the dependence is referenced during the program execution.
In Figure 4(a), an example of the reference-based probability for the sink reference is
illustrated. Assume e1 and e2 are two flow dependence edges to the sink reference r.
The reference r is executed N times while the edges e1 and e2 occur N1 and N2 times
respectively. The probability of the value coming from reference w1 is defined as N1/N
and from reference w2 N2/N. Such probability is able to tell us which definition is
more likely to provide the value to the reference r.

The iteration-based probability is defined as the number of iterations in which the
dependence edge occurs over the total number of iterations of the loop nest, as shown
in Figure 4(b). Again, the iteration-based probability may be sink-based or source-
base. This information is often related to the dependence distance and the control
flow within the loop.

66 T. Chen et al

4 How to Reduce the Profiling Overhead

From the discussion in section 3, the data dependence profiling could be quite time
consuming because we need to handle each memory reference individually, and there
is a significant amount of work on each memory reference. In this section, we present
ways to reduce such overhead during the dependence profiling.

The most direct way to reduce such overhead is to reduce the number of memory
references that need to be instrumented and tracked. In a typical optimizing compiler
such as ORC, many of its optimizations already work toward reducing the number of
memory references in the application program. Therefore, our instrumentation is able
to make use of the existing optimizations.

Overhead of Profiling

0
30
60
90

120

bz
ip2

cra
fty ga

p
gc

c
gz

ip m
cf

pa
rs

er

pe
rlb

m
k

tw
olf

vo
rte

x vp
r

 N
 t

im
es

sl

o
w

er

all procedures

innermost loops

Fig. 5. Overhead of dependence profiling

The data dependence profiling is still quite expensive even when the
instrumentation is done after WOPT, in which ORC eliminates most of the redundant
memory references. The overhead of various dependence profiling is shown Fig. 5.
The average overhead is over 40 times of the original execution time even only for the
innermost loops. We need to somehow improve the space and time efficiency to make
the tool more usable.

Unfortunately, the tradeoff to reduce the overhead of profiling often involves in
losing some precision in data dependence profiling. In the following experiments, we
will measure both the efficiency and the precision of each scheme proposed. The
efficiency can be measured by the space requirement and/or the profiling time. We
also need to address the precision issues in more details. First, we can measure how
many false dependence edges are produced and/or how many true dependence edges
are missing after a more efficient profiling method is used. The percentage of such
dependence edges with respect to the total dependence edges can be used for such a
measure. Secondly, the dependence probability of such false/missing dependence
edges should also be considered. A dependence edge with lower probability will have
a less impact on optimizations because the compiler may speculate it as non-
existence.

4.1 Reduce Shadow Size

As described in section 3.1, we trade space for time using shadow during dependence
detection. It is important to reduce the shadow size for better space efficiency. We

Data Dependence Profiling for Speculative Optimizations 67

define the hash function for the shadow in such a way that the conflict in hashing
rarely occurs. The total shadow size is determined by: (size of program space in
byte)*(size of a shadow entry)/granularity. The granularity is determined by how
many adjacent data bytes would share one shadow entry, while the shadow entry size
is determined by how many bytes are need to keep the runtime information during the
profiling (see Fig. 2). While the program space cannot be changed, the profiling tool
can manipulate the granularity and the shadow entry size.

Since most of the memory references access 4 bytes or 8 bytes each time, the size
of total shadow space can be reduced if we let 2k adjacent data bytes share a shadow
entry. However, larger granularities may introduce more false dependences.

False Dependence Caused by Large Granularity

0%

5%

10%

15%

20%

4-bytes 8-byte 16-byte 32-byte
Granularity

Distribution of False Dependence

0%
20%
40%
60%
80%

100%

0.
05 0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9 1

Probability

A
cc

u
m

al
ti

ve

P
er

ce
n

ta
g

e

4-bytes 8-bytes 16-bytes 32-bytes

Fig. 6. Precision of different granularities

To study the impact of the granularity, we compare the profiling results with a

granularity of 4, 8, 32 and 64 bytes to the results with a granularity of 1 byte in Fig. 6.
The results show that the granularity of 4 bytes is quite satisfactory. The reason is that
4-byte data, such as an integer or a 32-bit floating-point number, are the most
commonly used. The precision of using a granularity of 16 or 32 bytes is still
acceptable. This means that using a cache line for profiling or for communication is
still a good compromise.

Another factor affecting the size of shadow is the size of each entry in shadow.
From the previous discussion, we know that the reference ID, the calling path and the
iteration vector of each reference are stored in each shadow entry. Since compression
techniques have been applied to the reference ID and calling path, we focus on the
iteration vector here. To uniquely represent iterations of the loops in SPEC2000
benchmarks, the iteration counter in an iteration vector has to be 8 bytes. Hence, a
deeply nested loop may need a huge shadow entry. Since only dependences with a
short distance, usually a distance of 0 and 1, are important to optimizations, we can
store only a partial value of an iteration counter in the shadow. As a result, some false
dependence edges may be generated due to the overflow of iteration counters. Fig. 7
reports the precision of iteration counters with a size of 1, 2, and 4 bytes. In this
experiment, only the important loops (i.e. the most time-consuming loops) are
selected, and only the flow dependence edges with a distance of 0 or 1 are profiled.
Though the 1-byte iteration counter may result in a very high percentage of false
dependences, most of these false dependences have a probability close to 0, and,
hence, could be speculated with little impact on performance. This result helps us to
choose 1 byte as the size of our iteration counters.

68 T. Chen et al

False Dependence

0%

20%

40%
60%

4-bytes 2-bytes 1-byte
Size of Iteration Counter

Fig. 7. Precision of different size of iteration vector

4.2 Use Sampling to Improve Time Efficiency

Time efficiency of data dependence profiling could be improved by sampling
techniques. In sampling, only a small portion of the events is selected to reduce
profiling overhead. The sampling technique has been widely used in many other
profiling applications, such as edge profiling, execution time profiling and alias
profiling. In these profiling, sampling is directly applied to the relevant events. For
example, in edge profiling [25], the direction of each branch (i.e. branch taken or not
taken) is sampled. However, such sampling is not suitable for data dependence
profiling. One reason is that the data dependence is a relation between two memory
references, i.e. its source and sink. We cannot sample them independently. Second
reason is that the number of occurrences of a data dependence edge is not directly
related to its significance to a certain compiler optimization. Randomly sampling
individual references may not work for data dependence profiling from a statistical
point of view. More organized sampling such as considering a program segment as a
whole for sampling is more appropriate. A program segment can be a procedure or a
loop.

Most important procedures or loops in our benchmarks are executed many times
because they are usually contained in other loop structures and are the most time
consuming parts of the program. We can thus use the framework proposed in [17] for
more efficient sampling. In this framework, we keep two versions of the program
segment to be sampled: one is with and the other is without instrumentation for
dependence profiling. A switch point is set at the entry and the exit of the program
segment. We will then switch between these two versions during the execution of the
program with a pre-determined sampling rate. Since the profiling is done on the whole
program segment, instead of individual memory references, a more complete snap
shot of the data dependences in the program segment can be obtained.

We tested such a sampling technique for both procedures and loops. Different
sampling rates are used. The profiling overhead with different sampling rates is
measured against the original execution time. The precision of the profiling is
measured using the number of missing dependence edges. Such missing dependence
edges may in turn introduce some false dependence edges due to the transitive nature
of the data dependences. These false edges will not affect the program optimizations.
Fig. 8 reports the overhead and the precision of different sample rates for procedures.
They are usually in the range from 16% to 167% of the original execution time using

Data Dependence Profiling for Speculative Optimizations 69

a sampling rate of 0.0001 to 0.1, respectively, and with a precision ranging from 30%
to 10% in missing dependence edges.

Overhead and Missing Dependence

167%

0%

50%

100%

 1/10 1/100 1/1000 1/10000

sample rateoverhead missing dependence

Distribution of Missing Dependence

0%

50%

100%

0.1 0.2 0.4 0.6 0.8 1

Probability

A
cc

u
m

u
la

ti
ve

 P
er

ce
n

ta
g

e

1/10 1/100 1/1000 1/10000

Fig. 8. Sampling of the dependence in procedures

A loop in a procedure may also be invoked many times, and each invocation may

have only a few or a lot of iterations. We can take sampling according to the loop
invocations. Fig. 9 shows the precision and the efficiency of such sampling
techniques. The result shows that the data dependence profiling for loops can have a
very high precision even at the rate of 1/256. The overhead can be reduced to
below15% of the original execution time. We can also sample the loop based on loop
iterations, i.e. switch between two program versions after a predetermined number of
loop iterations. This will incur more overhead than that in invocation-based
techniques because of more frequent switching between two versions. However, this
technique may be more appropriate for outer loops that are invoked less frequently
than the inner loops.

Overhead and Missing
Dependence

0%

50%

100%

1/16 1/64 1/256
sample rateOverhead Missing dependence

Distribution of Missing
Depedence

0%

50%

100%

0.
00

1
0.

01 0.
1

0.
3

0.
6 1

Probability

A
cc

u
m

u
la

ti
ve

P

er
ce

n
ta

g
e

1/16 1/64 1/256

Fig. 9. Loop-oriented sampling

5 Related Work

Dependence profiling is used in [23] to help the optimizations for hyper-blocks. The
profiling is supported by a special hardware structure called the conflict buffer. The

70 T. Chen et al

scheme is quite efficient, compared with our instrumentation-based approach.
However, loop structures are not considered in their work. The detailed and useful
information about dependences, such as distance vectors and probability, is not
generated. The static analysis to gain probability information has been tried in [26],
but is limited to array references with linear subscript expressions only. Recent work
done by [27] also uses hardware supported profiling to help thread generation. The
profiling result is again limited, compared to our approach. Because of the cost of
dependence profiling, a co-processor is used to improve the efficiency in [13]. Our
instrumentation-based approach, though slower than hardware approach, is a general
approach. It can be used when hardware support is not available, and it is more
flexible. It is also easier to integrate the compile-time information with the runtime
information. With the sampling techniques described in section 4, the overhead of our
approach can be reasonably low.

Alias profiling is another type of profiling for memory disambiguation [21]. The
dependence profiling is able to provide more accurate information than the alias
profiling because the alias profiling is limited by its naming scheme. However, using
the finite naming space makes the alias profiling more efficient. The dependence
profile can be directly fed into the dependence graph in the compiler. Both
dependence profile and alias profile can be fed into the SSA form in the compiler.
However, alias profile matches the location factor scheme while the dependence
profile is close to statement factor representation.

6 Conclusions

We present a tool for data dependence profiling. This tool is able to produce detailed
data dependence information for nested loops and summarized dependence
information for function calls. Data dependence profiles can be fed back to compiler
to support speculative optimizations.

We observe that the data dependence profiling could be quite helpful in addition to
static compiler analysis. Our tool identified a large amount of dependence edges in
SPEC CPU2000 benchmarks with a low probability. This information is difficult to
obtain using only static compiler analyses. Such information could be very useful for
data speculation in optimizations such as PRE and code scheduling.

We also present several schemes to improve the timing and the spatial efficiency of
the profiling tool. We use a shadow space with a simple hashing scheme to facilitate
fast address comparison for detecting data dependences. It is very important to select
appropriate data granularity and the size of shadow entries to minimize the total size
of the shadow space.

With our proposed enhancement, we believe data dependence profiling can be very
useful for compilers that support data speculative optimizations.

Acknowledgements. This work is supported in part by the U.S. National Science
Foundation under grants EIA-9971666, CCR-0105574 and EIA-0220021 and grants
from Intel and Unisys.

Data Dependence Profiling for Speculative Optimizations 71

References

[1] U. Banerjee, Dependence Analysis for Supercomputing. Kluwer Academic Publishers,
1988.

[2] Michael Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge
MA, 1989.

[3] Pugh, W.: The Omega test: a fast and practical integer programming algorithm for
dependence analysis_; Communications of the ACM, 35, 8 (1992), 102-114.

[4] Richard L. Kennell and Rudolf Eigenmann. Automatic Parallelization of C by Means of
Language Transcription, Proc. of the 11th Int'l Workshop on Languages and Compilers
for Parallel Computing, 1998, pages 157--173. Lecture Notes in Computer Science,
1656, pages 166-180.

[5] L. J. Hendren, J. Hummel, and A. Nicolau. A general data dependence test for dynamic,
pointer-based data structures. In Proceedings of the SIGPLAN'94 Conference on
Programming Language Design and Implementation, pages 218--229, June 1994.

[6] R. Ghiya and L.J. Hendren. Is it a tree, a dag, or a cyclic graph? In Symposium on
Principle. of Program. Language, New York, NY, January 1996. ACM

[7] M. Hind. Pointer analysis: Haven't we solved this problem yet? ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, pages
54-61, Snowbird, Utah, June 2001.

[8] Rakesh Ghiya, Daniel Lavery and David Sehr. On the Importance of Points-To Analysis
and Other Memory Disambiguation methods For C programs. In Proceedings of the
ACM SIGPLAN’01 Conference on Programming Language Design and Implementation,
page 47-58, June 2001.

[9] C. Dulong. The IA-64 Architecture at Work, IEEE Computer, Vol. 31, No. 7, pages 24-
32, July 1998.

[10] G.S. Sohi, S.E. Breach, T. N. Vijaykumar. Multiscalar Processors. The 22nd Annual
International Symposium on Computer Architecture, pp. 414-425, June 1995.

[11] J.-Y. Tsai, J. Huang, C. Amlo, D.J. Lilja, and P.-C. Yew. The Superthreaded Processor
Architecture. IEEE Transactions on Computers, Special Issue on Multithreaded
Architectures, 48(9), September 1999.

[12] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal, and Wen-
mei W. Hwu, "Dynamic Memory Disambiguation Using the Memory Conflict Buffer,"
Proc. Sixth Int'l Conf. on ASPLOS, October 1994, pp. 183-193.

[13] C. Zilles and G. Sohi. A programmable co-processor for profiling. In Proceedings of the
7th International Symposium on High Performance Computer Architecture (HPCA-7),
January 2001. 12.

[14] R. Kennedy, S. Chan, S. Liu, R. Lo, P. Tu, and F. Chow. Partial Redundancy Elimination
in SSA Form. ACM Trans. on Programming Languages and systems, v.21 n.3, pages
627-676, May 1999.

[15] R. D.-C. Ju, S. Chan, and C. Wu. Open Research Compiler (ORC) for the Itanium
Processor Family. Tutorial presented at Micro 34, 2001.

[16] R. D.-C. Ju, S. Chan, F. Chow, and X. Feng. Open Research Compiler (ORC): Beyond
Version 1.0, Tutorial presented at PACT 2002

[17] Matthew Arnold and Barbara G. Ryder A Framework for Reducing the Cost of
Instrumented Code SIGPLAN Conference on Programming Language Design and
Implementation, 2001.

[18] http://www.specbench.org/osg/cpu2000/
[19] R. Kennedy, S. Chan, S.-M. Liu, R. Io, P. Tu, and F. Chow. Partial redundancy elimina-

tion in SSA form. ACM Trans. Program. Languages and Systems, May 1999.

72 T. Chen et al

[20] J. Lin, T. Chen, W.C. Hsu, P.C. Yew, Speculative Register Promotion Using Advanced
Load Address Table (ALAT), In Proceedings of First Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages 125-134, San Francisco,
California, March 2003

[21] Jin Lin, Tong Chen, Wei-Chung Hsu, and Pen-Chung Yew, Roy Dz-Ching Ju, Tin-Fook.
Ngai, Sun Chan, A Compiler Framework for Speculative Analysis and Optimizations,
Proceedings of ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 2003

[22] pfmon project web site: http://www.hpl.hp.com/research/linux/perfmon/
[23] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Improving Balance for

Pipelined Architectures. Journal of Parallel and Distributed Computing, 5:334-348, 1988.
[24] James Larus. Whole program paths. In Programming Languages Design and

Implementation (PLDI), 1999.
[25] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path profiling: The

showdown. In Conference Record of the 25th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, January 1998.

[26] R. D.-C. Ju, J. Collard, and K. Oukbir. Probabilistic Memory Disambiguation and its
Application to Data Speculation, Computer Architecture News, Vol. 27, No.1, March
1999.

[27] Michael Chen and Kunle Olukotun. TEST: A Tracer for Extracting Speculative Threads.
In Proceedings of First Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pages 301-312, San Francisco, California, March 2003

	1 Introduction
	2 Benefit from Data Dependence Profiling
	2.1 Speculative PRE
	2.2 Speculative Code Scheduling

	3 Instrumentation-Based Data Dependence Profiling
	3.1 Detection of Data Dependences Using Shadow Variables
	3.2 Function Calls
	3.3 Loops
	3.4 Dependence Probability

	4 How to Reduce the Profiling Overhead
	4.1 Reduce Shadow Size
	4.2 Use Sampling to Improve Time Efficiency

	5 Related Work
	6 Conclusions

