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Abstract. Data dependence analysis is the foundation to many reordering 
related compiler optimizations and loop parallelization. Traditional data 
dependence analysis algorithms are developed primarily for Fortran-like 
subscripted array variables. They are not very effective for pointer-based 
references in C or C++. With more advanced hardware support for speculative 
execution, such as the advanced load instructions in Intel’s IA64 architecture, 
some data dependences with low probability can be speculatively ignored. 
However, such speculative optimizations must be carefully applied to avoid 
excessive cost associated with potential mis-speculations. Data dependence 
profiling is one way to provide probabilistic information on data dependences 
to guide such speculative optimizations and speculative thread generation. 
Software-based data dependence profiling requires detailed tracing of memory 
accesses, therefore, could be very time consuming. In this paper, we examine 
issues related to data dependence profiling, and propose various techniques to 
improve the efficiency of data dependence profiling. We use the Open Research 
Compiler (ORC) [15,16] to test the efficiency of our data profiling techniques. 
We also study the effectiveness of data dependence profiling on data 
speculative optimizations on Itanium systems. Our results show that efficient 
data dependence profiling could improve the performance for data speculative 
optimizations. 

1   Introduction 

General data dependence analyses [1, 2, 3] have been extensively used for Fortran-
like subscripted array expressions in scientific applications. However, those 
algorithms are mostly inadequate for C and C++ programs due to the widely use of 
pointer expressions. Existing approaches usually require a very sophisticated inter-
procedural pointer alias analysis followed by a shape analysis [4, 5, 6]. The 
effectiveness of such approaches is often limited because of the increasing use of 
shared libraries, complex recursive data structures, and dynamically allocated objects 
in applications [7, 8].  

To circumvent such limitations in compiler analyses, some architectural and 
hardware schemes have been proposed to support data dependence speculation. For 
example, Intel’s IA64 architecture [9] provides the advance load instruction which 
can be used to schedule a load instruction across a possibly aliased store instruction. 
The correctness of the execution is enforced by checking whether such dependences 
exist or not at runtime. If no such dependence exists, the speculation is successful. If 
such dependence does exist, the check fails and a respective recovery action will take 
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place. A similar check and recovery approach has been proposed in speculative 
multithreaded processors [10, 11]. 

Like other speculative execution, the cost of mis-speculation is relatively high. To 
make use of the data speculation, the compiler typically assumes that the mis-
speculations should be very rare. However, it is often very difficult, if not possible, 
for a compiler to obtain such information based only on static analyses algorithms. 
Simply ignoring all possible data dependences may cause drastic performance 
degradation in some programs due to frequent mis-speculation and recovery. Like 
many existing profile-guided optimizations, data dependence profiling could provide 
the compiler with useful guidance on data speculative optimizations.  

In this paper, we present a software-only data dependence profiling approach to 
study the potential of data dependence profiling. Our data dependence profiling tool is 
instrumentation based. It is platform independent and can be used for many different 
types of data speculative execution. Although hardware supported data dependence 
profiling [12, 13] can be more efficient, they usually are limited by the size of the 
hardware table, and can only track data dependence among references in a constrained 
window of execution. Our tool does not have such limitations. It could provide data 
dependence information for a larger code region, not limited by program structures 
such as basic blocks, function calls, or loops. The instrumentation-based profiling 
approach could also provide additional flexibilities. The probability of a data 
dependence edge, for example, can be defined and, consequently, collected for 
different optimizations.  

Alias profile has been used to guide speculative register promotion in [14]. 
However, the information provided by the alias profiling is usually less accurate than 
that by the data dependence profiling. For example, two pointers p and q both point to 
a memory block allocated from the same malloc, but access different parts of the 
memory block. The alias profiling may indicate that p and q are all pointing to the 
same memory objects. However, data dependence profiling is based on pair-wise 
address comparison, so that p and q will not be data dependent on each other. We 
have conducted experiments to show that using data dependence profile yields a 
higher performance gain than using alias profile on the same speculative 
optimizations. Furthermore, data dependence profile can be more useful in 
parallelization than the alias profile. This is because disambiguation among array 
elements requires finer granularity than a typical alias profile can provide. 

Some unique features of our data dependence profiling tool are listed below: 
 

• It detects data dependence quickly. To detect data dependence at runtime, the 
addresses accessed by each pair of memory references need to be compared. Such 
cross checking has a complexity of O(n2), where n is the number of references. 
Other profiling approaches, such as edge profiling or value profiling, usually have 
a complexity that is linear to the profiling events. Hence, efficiency is very 
important in data dependence profiling, especially for very large application 
programs. We use a special hash function in conjunction with some sampling 
techniques to ensure data dependences can be detected very quickly. 

• It handles function calls. Our profiling tool detects data dependences among 
references within the same function calls, as well as data dependences across 
function calls. The side effect of function calls can be summarized, and the 
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compiler can use such information to overcome the barrier of function calls during 
its optimizations. 

• It handles nested loops. For loop related optimizations, it is very important to 
distinguish loop-carried dependences from loop-independent dependences. In our 
data dependence profiling, we associate each dependence edge with a distance 
vector. Since we do not want to limit the collection of data dependence information 
to the innermost loop only, the profiling tool can generate distance vectors for 
nested loops simultaneously. Notice that the loops may be nested across procedure 
boundaries. 

• It tracks the dynamic behavior of data dependence in programs. A data dependence 
edge may occur with different probabilities at runtime. However, we found that the 
probability of a data dependence edge needs to be well defined according to the 
consumers of the profiling information. How to collect the probability information 
in profiling needs to be addressed. 

 
We have implemented our data dependence profiling tool in Intel’s Open Research 

Compiler (ORC) [15, 16]. The collected data dependence profile can be fed back to 
the ORC compiler for speculative optimizations. The main contributions of this paper 
are listed below: 

 
• We present the design and the implementation of an instrumentation-based data 

dependence profiling tool. This tool is capable of generating detailed data 
dependence profiles (such as dependence distance vectors and dependence 
probability) for nested loops. Different dependence probabilities can be defined 
and profiled accordingly for different speculative optimizations. 

• We discuss and evaluate several techniques to improve the efficiency of data 
dependence profiling. We use a shadow memory space to conduct efficient data 
dependency checking. Since profiling is merely an approximation of the program 
behavior, we evaluate various implementation tradeoffs and their impact on the 
quality and the efficiency of the data dependence profiling. Various sampling 
techniques to reduce profiling overhead is also studied. Since data dependence is 
defined among memory references, it needs to consider the program structures, 
such as procedures and loops. Furthermore, an implementation of sampling 
technique similar to [17] has reduced the profiling overhead from many times of 
the original program execution time down to only 20%.  

• We show the benefit of data dependence profiling in two optimizations: profile-
guided code scheduling and speculative partial redundancy elimination. The 
performance improvement of some SPEC CPU2000 benchmarks on Itanium 
machines can be as high as 32%. 

 
The rest of this paper is organized as follows: the benefit of data dependence 

profiling is shown in section 2; Section 3 describes how the data dependence profiling 
is performed; The experimental results on how to reduce the overhead of data 
dependence profiling are presented in section 4; Section 5 discusses the related works; 
The final section provides the conclusions of this paper. 
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2   Benefit from Data Dependence Profiling 

Before we describe how data dependence profiling is performed, we would like to 
first show its potential benefit to two common compiler optimizations: the partial 
redundancy elimination and code scheduling. Our instrumentation tool is built on top 
of Intel’s Open Research Compiler (ORC). The instrumented code is then linked with 
our data dependence profiling library to generate an executable file. Data dependence 
is profiled when this executable file is executed with train input set. No space 
reduction or sampling techniques (discussed later) are applied. The profiling results 
are then fed back to ORC to guide optimizations. The optimized code is executed with 
the ref input set and the execution time is measured. Our baseline is the code 
compiled with ORC -O3. The reduction in the execution time is reported as 
performance improvement.  The machine used in our experiments is HP workstation 
i2000 with one 900MHz Itanium2 processor and 2GB of main memory. Our test 
programs are SPEC CPU2000 benchmarks [18]. 

2.1   Speculative PRE 

The partial redundancy elimination (PRE) [19] includes a set of compiler 
optimizations such as register promotion, strength reduction and expression 
redundancy elimination. It is one of the most important optimizations in the compiler. 
Data speculation has been introduced into PRE using alias profiling information [20, 
21]. However, alias profiling often cannot disambiguate among array references, or 
among memory references in a memory space managed by the application program 
itself. It also cannot determine whether aliases generated come from the same 
iteration or from different iterations. Instead, data dependence profiling often can 
provide more detailed information about memory references than alias profiling.  
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Fig. 1. Improvement on PRE using dependence profiling vs. alias profiling 

The speculative PRE using both alias and data dependence profiling information 
has been implemented on ORC. We measure its performance using pfmon [22] on 
Itanium systems. The performance improvement based on alias profiling and 
dependence profiling is compared in Fig. 1. The total number of CPU cycles and the 
total number of loads retired are measured for each program optimized by the 
speculative PRE. The result shows that data dependence profiling is able to discover 
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more redundant loads (more retired loads reduced) and outperforms alias profiling in 
the total CPU cycle. 

2.2   Speculative Code Scheduling 

Code scheduling aims to exploit ILP. Data speculation has been used to move loads 
speculatively so that the length of a critical path can be reduced [23]. In the ORC 
compiler, the speculation is based on heuristic rules. For example, a load instruction 
can be moved across only two aliased store instructions (based on the alias analysis in 
the compiler). We try to conduct more aggressive data speculation based on the data 
dependence profiling information. Dependence edges with a probability lower than 
2% are ignored. This threshold is determined by the overhead of a data mis-
speculation on Itanium2: it takes about 50 cycles to jump to and return from its 
recovery code at a check failure.  

Table 1. Improvement on code scheduling using dependence profiling 

 Performance 
improvement 

Regular loads changed 
to speculative loads 

Failure rate 

equake 8.36% 18.80% 0.34% 
art 32.34% 31.32% 0.88% 
Mesa 12.23% 9.14% 0.09% 
Bzip 0.34% 6.81% 6.98% 
Gzip 0.00% 2.45% 0.11% 
parser 2.36% 2.92% 2.00% 
Vortex 1.94% 4.62% 0.13% 
Average 8.22% 10.8% 1.5% 

 
The first column of Table 1 shows the performance improvement on Itanium2 

using data dependence profiling information. Some floating-point benchmarks such as 
art can improve performance by 32%. On average, 11% of regular load operations are 
turned into speculative loads (reported in the second column) with a very low check 
failure rate (i.e. less than 1% of mis-speculation) for most benchmark programs, 
except bzip and parser. The major reason for the improvement is that, ORC, in fear of 
the high penalty of mis-speculation, is overly conservative on scheduling data 
speculative loads. With dependence profiling, more aggressive scheduling can be 
performed with confidence. The failure rate observed here also shows that the 
dependence profiling is quite insensitive to different input sets. When we ignore the 
dependence with less than 2% probability observed with train input, only bzip2 has a 
failure rate higher than 2% for the execution with ref input. 

3   Instrumentation-Based Data Dependence Profiling  

In this section, we address the issues related to data dependence profiling that include 
detection of data dependences, handling of function calls and nested loops, and the 
probability of a data dependence edge. 
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3.1   Detection of Data Dependences Using Shadow Variables 

In our data dependence profiling, we focus only on the data dependence among 
memory references. We ignore data dependence among registers because it can be 
easily obtained by simple static analysis. Therefore, only memory references are 
instrumented. The instrumented profiling instructions collect the address value and 
the reference ID of each instance of memory references at runtime. The reference ID 
is used to identify each static reference. It is assigned during the instrumentation so 
that profiling results could be mapped back to the compiler. 

Data dependence occurs when two memory references access the same memory 
location in the data space. One occurrence of data dependence can be represented as a 
dependence edge from the source to the sink.  There are four data dependence types: 
flow dependence (or true dependence), anti-dependence, output dependence, and 
input dependence (or reference dependence). 

It is very expensive to check data dependence based on pair-wise address 
comparison, especially when the program has a large number of memory references. 
The number of dynamic instances of all memory references could be very large when 
there are nested loops in the program. Therefore, we use a special data structure, 
called shadow memory, to efficiently detect data dependences. This is a typical trade 
off between time and space. 
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Fig. 2. Detect data dependence using shadow 

Shadow is used to store information during profiling. A simple hash function using 
the address value maps each memory reference in the data space to its corresponding 
shadow entry in the shadow memory (illustrated in Fig. 2). The shadow memory is 
allocated on demand, and can be freed when the profiling for a particular region such 
as a particular nested loop or a procedure of interests has completed. 

Now, we describe how to detect data dependence during the profiling process. 
First, each memory reference locates its shadow entry using the hash function on the 
address value. The shadow entry contains the reference ID of the latest load and the 
latest store operation to this memory location, or is empty when this location is 
accessed for the first time. If the memory reference is a load operation, there should 
be a flow dependence edge from the latest store to this load operation, and also an 
input dependence edge from the latest load to this load operation. If the memory 
reference is a store operation, there should be an anti dependence edge from the latest 
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load to this store operation, and also an output dependence edge from the latest store 
to this store operation. Finally, the reference ID of the current memory reference is 
stored into the shadow entry, and the reference ID for previous load or store in the 
shadow entry is overwritten. 

Using this scheme, data dependences can be quickly detected without expensive 
pair-wise address comparisons among all memory references. Using shadow space is 
equivalent to a software implementation of the associative memory in [21]. We 
reduce the number of pair-wise comparisons by focusing only on the execution path 
of a program, i.e. only the latest load and the latest store are compared. We can use a 
linked list, for each type of data dependence edges, to record the dependence edges. 

3.2   Function Calls 

When function calls are present in a profiled program, a dependence edge detected 
between two memory references in two different procedures needs to be mapped into 
the common procedure that contains both procedures. It is because, to be useful to a 
compiler, a data dependence graph of a procedure should contain only the 
dependences among the memory references and function calls, within the same 
invocation of the procedure. However, profiling information at runtime may contain a 
lot of dependences between different invocations of procedures at different call sites. 
We need to sort through these data dependences and extract relevant data dependence 
information. It requires the calling path information of all memory references to avoid 
creating false dependence edges. 
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Fig. 3. False dependences may be introduced by function calls 

In Fig. 3, for example, a flow dependence from reference 2 to reference 1 occurs 
only when procedure Q and R are called within procedure P. Therefore, only one 
dependence edge from the corresponding call site of Q to the call site of R in the 
procedure P should be generated. If we do not have calling path information for each 
memory reference, we have to assume that there is a dependence edge from any call 
site that may calls Q to any call site that may calls R. Here, we include all the 
procedures calling Q or R directly or indirectly. They are shown as false dependence 
edges in Fig. 3. The example illustrates the need for calling path information in data 
dependence profiling. 
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To reduce the number of false dependence edges caused by function calls, the 
calling context for each memory reference is recorded in its shadow entry. When a 
dependence edge is detected, their calling contexts help to locate the common 
procedure. Different kinds of calling context can be used in the dependence profiling, 
resulting in different precision and efficiency. 

 
• Fully extended call paths. Whenever a procedure is called, a new call node is 

assigned for this invocation. The call path made up with such call nodes is able to 
distinguish both the different call sites of a procedure and the different invocations 
of a call site. It is easy to maintain the fully extended calling path at runtime: push 
a new node to the call stack when a procedure is invoked, and pop the top node 
from the call stack when a procedure call returns. The nodes in the call stack can 
be linked backwardly and we only keep the top node in the shadow entry. When a 
dependence edge occurs, the common part in their calling context can be identified. 
A dependence edge should be added in the farthest common procedure from the 
main procedure between the corresponding references or call sites. 

• Compacted call paths. The space requirement of the fully expanded call paths 
could be very high because a call site may appear in a nested loop or in a recursive 
call. We could reduce the size of a call path by using only one node to represent 
multiple invocations of a call site in a nested loop or in recursive calls to reduce the 
space requirement. Compression techniques [24] can also be used. However, 
compacted call paths may result in some false dependence edges. 

 
For SPEC CPU2000 benchmarks, even with the train input set, it is still too costly to 
fully extend all call paths. We use the compact call paths for efficiency. 

3.3   Loops 

When a dependence edge occurs in a loop nest, a dependence distance tells how far 
the sink is away from the source of a dependence edge in terms of the number of 
iterations. Optimizations may treat dependences with different distances quite 
differently. It is important for a profiling tool to be able to generate distance vectors. 

In order to generate a distance vector for a dependence edge, we instrument the 
beginning of the loop body. Each loop is also assigned an iteration counter. This 
counter is incremented when the beginning of the loop body is encountered. The 
values in the iteration counters of the loops nested outside of the current reference 
form an iteration vector. We store the iteration vector in the shadow. When a 
dependence edge is detected, we first have to find out how the two references nested 
in loops, with the consideration of the calling context discussed in the previous 
section. The loop nesting information is not recorded in the shadow. The calling 
context information in the shadow is used to help identifying the commonly nested 
loops of the two references. The iteration vectors of the two references are aligned 
and the iteration counters of their commonly nested loops are identified. The distance 
vector is computed by subtracting the iteration vector in the shadow from the current 
iteration vector. Dependences together with their distance vectors are recorded. 
Depending on the optimizations using the profile, limited distance or the sign of the 
distance, =, < or >, can be recorded instead for better efficiently. 
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3.4   Dependence Probability 

A static dependence analysis in a compiler usually can only tell whether an edge 
between two memory references exists or not. However, with the dependence 
profiling, we can further observe whether the data dependence rarely, frequently, or 
always occur between the two memory references. Such additional information allows 
a compiler optimization to deal with a data dependence edge accordingly for a better 
performance. In general, a compiler can speculate only on those dependences that 
rarely occur in order to avoid costly mis-speculations. Hence, such information is 
especially important to speculative optimizations in a compiler. 

We use a dependence probability to depict such dynamic behavior of the 
dependence. There are several ways to define the dependence probability. It depends 
on how such information is to be used by later speculative optimizations. Here, we 
only focus on two possible definitions: the reference-based probability and the 
iteration-based probability. 

  

w 1 w 2 

r: N  times 

e1: N 1 times e2: N 2 times 

   P robability(e1) = N 1/N  
   P robability(e2) = N 2/N  
 
(a) reference-based probability 
        according to  the sink 

iteration: 
0    1       2        3                    N -1 

    count 1     count 1  
    P robability: 2 /N  
 
(b) iteration-based probability 

 

Fig. 4. Different definitions of dependence probability for dependence profiling 

The reference-based probability is defined as the number of the occurrences of a 
dependence edge over the total number of the occurrence of the reference. The 
reference may be either the source or the sink of the dependence edge. This 
information gives an indication of how often a dependence edge occurs when either 
the source or the sink of the dependence is referenced during the program execution. 
In Figure 4(a), an example of the reference-based probability for the sink reference is 
illustrated. Assume e1 and e2 are two flow dependence edges to the sink reference r. 
The reference r is executed N times while the edges e1 and e2 occur N1 and N2 times 
respectively. The probability of the value coming from reference w1 is defined as N1/N 
and from reference w2 N2/N. Such probability is able to tell us which definition is 
more likely to provide the value to the reference r. 

The iteration-based probability is defined as the number of iterations in which the 
dependence edge occurs over the total number of iterations of the loop nest, as shown 
in Figure 4(b). Again, the iteration-based probability may be sink-based or source-
base. This information is often related to the dependence distance and the control 
flow within the loop. 
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4   How to Reduce the Profiling Overhead 

From the discussion in section 3, the data dependence profiling could be quite time 
consuming because we need to handle each memory reference individually, and there 
is a significant amount of work on each memory reference. In this section, we present 
ways to reduce such overhead during the dependence profiling. 

The most direct way to reduce such overhead is to reduce the number of memory 
references that need to be instrumented and tracked. In a typical optimizing compiler 
such as ORC, many of its optimizations already work toward reducing the number of 
memory references in the application program. Therefore, our instrumentation is able 
to make use of the existing optimizations.  

Overhead of Profiling
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Fig. 5. Overhead of dependence profiling 

The data dependence profiling is still quite expensive even when the 
instrumentation is done after WOPT, in which ORC eliminates most of the redundant 
memory references. The overhead of various dependence profiling is shown Fig. 5. 
The average overhead is over 40 times of the original execution time even only for the 
innermost loops. We need to somehow improve the space and time efficiency to make 
the tool more usable. 

Unfortunately, the tradeoff to reduce the overhead of profiling often involves in 
losing some precision in data dependence profiling. In the following experiments, we 
will measure both the efficiency and the precision of each scheme proposed. The 
efficiency can be measured by the space requirement and/or the profiling time. We 
also need to address the precision issues in more details. First, we can measure how 
many false dependence edges are produced and/or how many true dependence edges 
are missing after a more efficient profiling method is used. The percentage of such 
dependence edges with respect to the total dependence edges can be used for such a 
measure. Secondly, the dependence probability of such false/missing dependence 
edges should also be considered. A dependence edge with lower probability will have 
a less impact on optimizations because the compiler may speculate it as non-
existence.  

4.1   Reduce Shadow Size  

As described in section 3.1, we trade space for time using shadow during dependence 
detection. It is important to reduce the shadow size for better space efficiency. We 
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define the hash function for the shadow in such a way that the conflict in hashing 
rarely occurs. The total shadow size is determined by: (size of program space in 
byte)*(size of a shadow entry)/granularity. The granularity is determined by how 
many adjacent data bytes would share one shadow entry, while the shadow entry size 
is determined by how many bytes are need to keep the runtime information during the 
profiling (see Fig. 2). While the program space cannot be changed, the profiling tool 
can manipulate the granularity and the shadow entry size.  

Since most of the memory references access 4 bytes or 8 bytes each time, the size 
of total shadow space can be reduced if we let 2k adjacent data bytes share a shadow 
entry. However, larger granularities may introduce more false dependences. 
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Fig. 6. Precision of different granularities 

 
To study the impact of the granularity, we compare the profiling results with a 

granularity of 4, 8, 32 and 64 bytes to the results with a granularity of 1 byte in Fig. 6. 
The results show that the granularity of 4 bytes is quite satisfactory. The reason is that 
4-byte data, such as an integer or a 32-bit floating-point number, are the most 
commonly used. The precision of using a granularity of 16 or 32 bytes is still 
acceptable. This means that using a cache line for profiling or for communication is 
still a good compromise. 

Another factor affecting the size of shadow is the size of each entry in shadow. 
From the previous discussion, we know that the reference ID, the calling path and the 
iteration vector of each reference are stored in each shadow entry. Since compression 
techniques have been applied to the reference ID and calling path, we focus on the 
iteration vector here. To uniquely represent iterations of the loops in SPEC2000 
benchmarks, the iteration counter in an iteration vector has to be 8 bytes. Hence, a 
deeply nested loop may need a huge shadow entry. Since only dependences with a 
short distance, usually a distance of 0 and 1, are important to optimizations, we can 
store only a partial value of an iteration counter in the shadow. As a result, some false 
dependence edges may be generated due to the overflow of iteration counters. Fig. 7 
reports the precision of iteration counters with a size of 1, 2, and 4 bytes. In this 
experiment, only the important loops (i.e. the most time-consuming loops) are 
selected, and only the flow dependence edges with a distance of 0 or 1 are profiled. 
Though the 1-byte iteration counter may result in a very high percentage of false 
dependences, most of these false dependences have a probability close to 0, and, 
hence, could be speculated with little impact on performance. This result helps us to 
choose 1 byte as the size of our iteration counters. 
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Fig. 7. Precision of different size of iteration vector 

4.2   Use Sampling to Improve Time Efficiency 

Time efficiency of data dependence profiling could be improved by sampling 
techniques. In sampling, only a small portion of the events is selected to reduce 
profiling overhead. The sampling technique has been widely used in many other 
profiling applications, such as edge profiling, execution time profiling and alias 
profiling. In these profiling, sampling is directly applied to the relevant events. For 
example, in edge profiling [25], the direction of each branch (i.e. branch taken or not 
taken) is sampled. However, such sampling is not suitable for data dependence 
profiling. One reason is that the data dependence is a relation between two memory 
references, i.e. its source and sink. We cannot sample them independently. Second 
reason is that the number of occurrences of a data dependence edge is not directly 
related to its significance to a certain compiler optimization. Randomly sampling 
individual references may not work for data dependence profiling from a statistical 
point of view. More organized sampling such as considering a program segment as a 
whole for sampling is more appropriate. A program segment can be a procedure or a 
loop. 

Most important procedures or loops in our benchmarks are executed many times 
because they are usually contained in other loop structures and are the most time 
consuming parts of the program. We can thus use the framework proposed in [17] for 
more efficient sampling. In this framework, we keep two versions of the program 
segment to be sampled: one is with and the other is without instrumentation for 
dependence profiling. A switch point is set at the entry and the exit of the program 
segment. We will then switch between these two versions during the execution of the 
program with a pre-determined sampling rate. Since the profiling is done on the whole 
program segment, instead of individual memory references, a more complete snap 
shot of the data dependences in the program segment can be obtained.  

We tested such a sampling technique for both procedures and loops. Different 
sampling rates are used. The profiling overhead with different sampling rates is 
measured against the original execution time. The precision of the profiling is 
measured using the number of missing dependence edges. Such missing dependence 
edges may in turn introduce some false dependence edges due to the transitive nature 
of the data dependences. These false edges will not affect the program optimizations. 
Fig. 8 reports the overhead and the precision of different sample rates for procedures. 
They are usually in the range from 16% to 167% of the original execution time using 
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a sampling rate of 0.0001 to 0.1, respectively, and with a precision ranging from 30% 
to 10% in missing dependence edges. 
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Fig. 8. Sampling of the dependence in procedures 
 
A loop in a procedure may also be invoked many times, and each invocation may 

have only a few or a lot of iterations. We can take sampling according to the loop 
invocations. Fig. 9 shows the precision and the efficiency of such sampling 
techniques. The result shows that the data dependence profiling for loops can have a 
very high precision even at the rate of 1/256. The overhead can be reduced to 
below15% of the original execution time. We can also sample the loop based on loop 
iterations, i.e. switch between two program versions after a predetermined number of 
loop iterations. This will incur more overhead than that in invocation-based 
techniques because of more frequent switching between two versions. However, this 
technique may be more appropriate for outer loops that are invoked less frequently 
than the inner loops. 
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Fig. 9. Loop-oriented sampling 

5   Related Work 

Dependence profiling is used in [23] to help the optimizations for hyper-blocks. The 
profiling is supported by a special hardware structure called the conflict buffer. The 
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scheme is quite efficient, compared with our instrumentation-based approach. 
However, loop structures are not considered in their work. The detailed and useful 
information about dependences, such as distance vectors and probability, is not 
generated. The static analysis to gain probability information has been tried in [26], 
but is limited to array references with linear subscript expressions only. Recent work 
done by [27] also uses hardware supported profiling to help thread generation. The 
profiling result is again limited, compared to our approach. Because of the cost of 
dependence profiling, a co-processor is used to improve the efficiency in [13]. Our 
instrumentation-based approach, though slower than hardware approach, is a general 
approach. It can be used when hardware support is not available, and it is more 
flexible. It is also easier to integrate the compile-time information with the runtime 
information. With the sampling techniques described in section 4, the overhead of our 
approach can be reasonably low. 

Alias profiling is another type of profiling for memory disambiguation [21]. The 
dependence profiling is able to provide more accurate information than the alias 
profiling because the alias profiling is limited by its naming scheme. However, using 
the finite naming space makes the alias profiling more efficient. The dependence 
profile can be directly fed into the dependence graph in the compiler. Both 
dependence profile and alias profile can be fed into the SSA form in the compiler. 
However, alias profile matches the location factor scheme while the dependence 
profile is close to statement factor representation. 

6   Conclusions 

We present a tool for data dependence profiling. This tool is able to produce detailed 
data dependence information for nested loops and summarized dependence 
information for function calls. Data dependence profiles can be fed back to compiler 
to support speculative optimizations. 

We observe that the data dependence profiling could be quite helpful in addition to 
static compiler analysis. Our tool identified a large amount of dependence edges in 
SPEC CPU2000 benchmarks with a low probability. This information is difficult to 
obtain using only static compiler analyses. Such information could be very useful for 
data speculation in optimizations such as PRE and code scheduling. 

We also present several schemes to improve the timing and the spatial efficiency of 
the profiling tool. We use a shadow space with a simple hashing scheme to facilitate 
fast address comparison for detecting data dependences. It is very important to select 
appropriate data granularity and the size of shadow entries to minimize the total size 
of the shadow space. 

With our proposed enhancement, we believe data dependence profiling can be very 
useful for compilers that support data speculative optimizations. 
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