Partial Correctness Assertions
Provable in Dynamic Logics

Daniel Leivant*

Computer Science Department, Indiana University, Bloomington, IN 47405.
leivant@cs.indiana.edu.

Abstract. We consider a formalism DL for first order Dynamic Logic,
based on Segerberg’s axioms for modalities, and observe that DL is
not conservative over Hoare Logic (HL) when the background theory
is empty, but is conservative if the background theory is the complete
theory of an expressive structure (in the sense of Cook). We identify
Peano Arithmetic (PA) as the transition point between these two states
of affairs: DL is conservative over HL in the presence of a number
theory that contains PA | and is not conservative for the sub-theories of
PA with a bound on the complexity of induction formulas.

We proceed to delineate a natural sub-formalism of DL, with Segerberg’s
induction restricted to first order formulas, and prove that the resulting
calculus proves exactly the same partial correctness assertions as HL,
regardless of the background first order theory.

1 Introduction

Hoare-style Logics prove partial correctness assertions (PCAs) about impera-
tive programs. Their prominent role in program verification is due in part to
their being syntax-directed: the inference rules follow the inductive buildup of
programs. As a result, proofs can be be converted into program annotations,
and inference rules can guide program derivation and transformation. In con-
trast, some central rules of Dynamic Logics are not syntax directed, allowing
reasoning that intertwines formulas and programs in complex ways. This added
complexity is obviously necessary when proving properties of programs that are
themselves more complex than PCAs, such as [a*]T — (a*) ¢l But does Dy-
namic Logic buy us PCA’s that Hoare’s Logic fails to prove? That is, are there
PCA that are proved in first order logic augmented with Segerberg’s rules for
program modalities, but are not provable using only PCA’s along the Way?E

The answer might depend, of course, on the background first order theory
T, which in the case of Hoare’s Logic manifests itself via the implicational first
order formulas used in the Rule of Consequence,

* Research partially supported by NSF grant CCR-CCR-0105651.

! Le., the formula stating that if all iterations of a terminate then ¢ is true after some
iterate.

2 A formalism for Dynamic Logic considered by Harel [5J6] has an additional inference
rule, dubbed Convergence. We discuss elsewhere that extension.

I. Walukiewicz (Ed.): FOSSACS 2004, LNCS 2987, pp. 304-B17] 2004.
© Springer-Verlag Berlin Heidelberg 2004

Partial Correctness Assertions Provable in Dynamic Logics 305

¢ @lajy’ P =
plalp

If a Hoare-style logic H is relatively complete for a structure S, and T consists
of the entire first order theory Th(S) of S, then Cook’s Relative Completeness
Theorem applies, and already H(T) (i.e. H based on T) proves all PCA’s true
in S. Unfortunately, this observation is not particularly helpful, because Th(S)
is not effectively axiomatizable for most structures S of interest.

Consider then the opposite extreme case, where T is empty, i.e. the Conse-
quence Rule invokes only implications that are provable in first order logic, no
axioms added. Even though Dynamic Logic has a far more complex proof theory
than Hoare Logic, it is not immediately obvious that this difference should ma-
nifest itself in more PCA’s being proved. In general, extending a formalism with
extra expressive or deductive power is no guarantee that new theorems of a
simple form are provedE

We shall show (Theorem [2) that, in fact, DL based on the empty theory
proves far more PCA’s than Hoare’s Logic based on the empty theory. To fo-
cus on the essentials, we formulate this and subsequent theorems for a simple
programming language, namely regular programs with first-order tests and as-
signments as atomic actions. (Guarded iterative programs, i.e. while programs,
are definable in terms of these regular programs.) Also, to facilitate comparisons,
we restrict our attention to the natural numbers as the only data type.

Since DL is conservative over HL when the background theory T is as strong
and possible, and not conservative when T is empty, it is natural to ask whether
there is a theory T\ that demarcates a transition between these two states of
affair. In Theorem [3] we prove that Peano Arithmetic PA is such a transition
point: DL(T) is conservative over H(T) for all extensions T of PA, but not
when T is PA with a bound on the complexity of induction formulas.

Peano Arithmetic, albeit natural and transparent, is a surprisingly powerful
theory, because it allows Induction for arbitrarily complex formulas. Thus, for all
practical purposes Dynamic Logic is not conservative over Hoare’s Logic. One
would wish, then, to identify a variant of Dynamic Logic that is conservative
over Hoare Logic for any background theory. In Theorem [l we identify such
a variant, obtained simply by restricting Segerberg’s Induction to first order
eigen-formulas, that is, with no reference to programs.

Theorem [7]is our main result, both technically and for its practical potentials.
The main difficulty is in showing that Segerberg’s Induction,

[(p—[adp) = (p—[a’]ep)

3 For example, extending Peano Arithmetic with all true I79 sentences yields a theory
vastly more powerful than PA, but without any new provably recursive functions

.

306 D. Leivant

(with ¢ program-free) does not prove more PCA’s than the Invariance Rule of
Hoare Logic for regular programs,

This is far from obvious, because the premise of the Invariance Rule requires
@ to be an invariant of ¢ in all states, whereas in the premise of Segerberg’s
Induction ¢ needs to be invariant under « just in states reached by iterated
execution of a.

2 Dynamic Logic and Arithmetic

2.1 Dynamic Logic over Regular Programs

To focus on the essentials, we refer to the simplest non-trivial imperative pro-
gramming language, namely regular programs over assignments, with first-order
tests [T2J6]. That is, we fix a vocabulary V (a finite set of function and relational
identifiers, each assigned a non-negative integer as an arity). Let A be the set of
V -assignments, that is expressions of the form z := t, where t is a V-term. The
set P of V-regular programs is generated inductively by the following clauses for
abstract syntax.

A>a (V-assignments)
&> F (first order V-formulas)
Poa:=al|?’F |oyalaUa|a*

As usual, guarded iterative programs (“while programs”) are definable by pro-
grams in P: skip = ?T, abort = 7L, (if F then a) else 3 = (F; a) U
(?=F; B), and (while FF do a) = (?F; a)*; (?7=F). Given a V-structure S,
the semantics of programs « is defined by a straightforward recurrence on the
complexity of a (see e.g. [6]).

A DL formula of the form ¢ — [a]t), with ¢ and ¥ first-order, is said to be a
partial-correctness assertion (PCA). It is often useful to abbreviate the formula
above by @[a]. The first-order formula ¢ is dubbed the PCAs pre-condition,
and ¥ is its post-condition.

The following are the rules of the deductive calculus DL for Dynamic Logic,
to be added to a deductive calculus for first order logic. The rules are due to
Segerberg, who formulated them for Propositional Dynamic Logic (see [12], [6]

§5.5]).

I Axiom-templates and rules for programs in general. These are the rules of the
rudimentary modal logic K:

Box Distribution: [a](p—=1) = ([a]e—[a]y).

Generalization (Necessitation): F[ale

Partial Correctness Assertions Provable in Dynamic Logics 307
IT Rules for atomic programs; these define the intended meaning of atomic pro-
grams in terms of first order logic:
Assignment: [z := t]p[z] < @[t]
Test: [?x]¢ < (x—¥)
IIT Syntax directed rules for regular-program constructs; these relate the mea-

ning of [e] for a compound program « to the meaning of [3] for the imme-
diate components 3 of .

Composition: [a; Bl < [a][Ble
Branching: [aU Bl + [a]e A [Ble
Iteration: [a*]e <> @ A la][a’]e

IV Induction; this schema conveys the inductive meaning of the iteration ope-
rator x:

[@](p = [a]p) = (¢ = [a"]p)

If T is a first order V-theory, we write DL(T) for the deductive calculus
above, based on first order logic, and using T as axioms. We refer to T as the
background theory.

2.2 An Interpretation of Peano Arithmetic in Dynamic Logic

While Dynamic Logic is intended as a logical formalism, that is with arbitrary
relational structures as potential universes, the semantic of iteration is defined as
standard iteration, i.e. with natural numbers as counters. This makes it possible
to enforce natural numbers as values for variables. Namely, the modal opera-
tor [N(z)], where N(z) is the program z := 0;(z := s(z))* (with s denoting
the successor function), forces = to range precisely over the natural numbers
in its scope. That is, [N(x)]¢ is true in a structure S and an environment 7
therein iff the formula Vz. N(x) — ¢ is true in that environment with the
unary identifier N interpreted as the set of denotations in S of the numerals
0,5(0),s(s(0)),... ,s"(0),....

Peano Arithmetic (PA) is the first order theory over the vocabulary consi-
sting of identifiers for 0, s (the successor function), + and x. There are three
groups of axioms:

1. The two separation axioms for N, i.e. Peano’s Third and Fourth Axioms
Va.s(x) # 0 and Va,y.s(z)=s(y) = z=y

2. The defining recurrence equations for addition and multiplication.
3. All instances of the schema of Induction,

Ve (pla] > plsa]) — ([0 = Var. fa])

308 D. Leivant

It will be convenient to consider a definitional extension of Peano Arithmetic, as
follows. It is well known that there are canonical arithmetization of syntax for
which the basic syntactic operations, such as term substitution and correctness of
inferences, are represented by primitive recursive (in fact, elementary-recursive)
functions. We posit function identifiers for these functions (as well as for the
auxiliary functions used to define them), and stipulate that Peano Arithmetic
has as axioms all defining primitive-recursion equations for these functions. We
write v for the conjunction of the separation axioms and the defining equations
for the functions of the theory.

We interpret PA in DL as follows, writing ¢ for the DL formula that
interprets a PA formula ¢. An equation t = t’ is interpreted as itself. Our inter-
pretation commutes with the propositional connectives: (—)? =4t —(¢?),
etc. Quantifiers are interpreted using the modal operators: (Vz.p)P =4

IN@))(P), and (Gr.)? =ar (N(x))(P).
Theorem 1. Let ¢ be a closed formula in the language of PA as above.
1. @ is true in the standard model of arithmetic iff v — @P is valid.

2. ¢ is a theorem of PA iff v— @ is provable in DL.

Proof Outline. The proof of (1) is by a straightforward induction on the struc-
ture of ¢.

The forward direction of (2) is proved by induction on the PA proof of ¢.
The only interesting case is Induction, i.e. with ¢ of the form

Va (pla] = plsz]) — ($[0] = Va pla])
Then P is
[2:=0; (2 := s(2))"| (" [2] =97 [s(x)]) — $7[0] = [z := 0 (x := 5(x))"|4p[z]

By the Box-Distribution rule of DL, it suffices to prove

(2= s(2)"|([2] = "[s(@)]) — @[] = [(2:= s(x))"]l2]

or, equivalently (by the Assignment Rule),

(&= s(2)"[(@"[z] = [0 = s(@)]"[2]) = @Pla] = [(z = s(2))"]pla]

But this is an instance of Segerberg’s Induction Schema of DL.
The backward direction of (2) is proved by interpreting DL in Peano’s Arith-
metic. This has been done, e.g., in [113M4]. -

Note that our interpretation of PA in DL does not use quantification in DL.
This is because all basic data is generated inductively, and so can be referred
to as the output of a program. This does not show, however, that quantification
is generally redundant in Dynamic Logic. For example, DL specifications for
programs over graphs would naturally use quantifiers over vertices and edges.

Partial Correctness Assertions Provable in Dynamic Logics 309
The use of the nondeterministic * operator in the program N(z) is not es-
sential here. We could use instead the deterministic program

N'(z) = y :=z; while y 20 do y:=y — 1 end

We would then interpret Vr.p by Vz. [N/(z)] ¢P. Of course, in the absence of
nondeterministic program constructs we can no longer dispense with quantifiers.

2.3 Interpreting Inductive Algebras

We can use DL modalities to force variables to range over any given inductively
generated algebra. For example, the set X* of words over a finite alphabet X
can be identified with the free algebra generated from the constant e, denoting
the empty word, and, for each a € X', a unary function identifier a. For the case
Y = {0, 1} the constructors are the 0-ary € and the unary 0 and 1. A word such
as 011 is represented in the algebra as 0(1(1(e))).

Define now a program analogous to N(x):

Wioy(z) = z:=¢€; ((x:=0(x)) U (xz:=1(x)))"

Then [Wyg 11()] ¢ is true in a structure S and environment 7 therein exactly
when ¢ is true for all denotations of terms representing {0, 1}*.

The definition is similar for arbitrary word algebras X, and, indeed, for any
free algebra. Multi-sorted free algebras can also be represented by such iterative
programs. For example, to have x range over the algebra of lists over N, with A
denoting NIL and ¢ denoting cons, we use the program

Ly(z) = ri=A; (y:=0; (y:=s(y)"; v:=c(y,r))"

It is not hard to prove for every inductive algebra (even multi-sorted) state-
ments analogous to the two parts of Theorem [I. We shall not have use for these
generalizations here.

3 Dynamic Logic vs. Hoare’s Logic: The Role of the
Background Theory

3.1 Hoare’s Logic for Regular Programs

Let V be a vocabulary, and T a V-theory, all of whose axioms are closed for-
mulas. We define a Hoare calculus H*(T) for reasoning about PCAs for regular
V-programs with assignments. The distinctive feature of a Hoare logic is the
reference to only PCAs and first-order V-formulas.

In the following, b stands for provability in first-order logic (for example,
using natural deduction derivations). The inference rules are as follows.

310 D. Leivant

ASSIGNMENT {t/a}p [z:=t] ¢
COMPOSITION ¥ [alpx[a;ﬁ]xsa[ﬂ] p
BRANCHING Y [Oj} ‘[Pa - L;]bg[pﬁ] ®p
I el g
TERATION -
pla]e
A\
QUERY W X quantifier-free
P plaje THY =
RE-CONSEQUENCE /
Y o] ¢
P Ylajp Tre—¢
OST-CONSEQUENCE :
Yol ¢

A formalism H(T) for reasoning about PCAs for guarded iterative programs
is obtained by replacing the rules for Branching, Query, and Iteration by rules
for the remaining program constructs of guarded iterative programs. The rules
are exhibited in the following table.

SKIP o [skip] ¢

ABORT @ [abort] L

CASES (A ’Q @l (pA-x) B¢
[if x then a else B¢

ITERATION (pAx) o] ¢

@ [while x do] (¢ A —X)

If @ is a regular V-program and T is a V-theory, we write T Fg 9 [a] ¢
when ¥ [a] ¢ is derivable in H*(T).

Partial Correctness Assertions Provable in Dynamic Logics 311
3.2 The Cases of Maximal and Minimal Background Theories

The largest possible first-order theory T for the structure N is the set Th(N) of
all V-formulas that are true in the standard model A for the natural numbers
(with function identifiers interpreted as the primitive recursive functions they
are intended to denote). For this choice of T, H(T) proves exactly the PCA’s
that are true in AV, by Cook’s Relative Completeness Theorem [2]. Since DL(T)
is sound for A, it cannot possibly prove additional PCA’s.

At the other extreme we have as T the empty theory. The proof theory of
DL is far richer and more complex than that of Hoare’s Logic, but (as discussed
in the Introduction) this by itself does not necessarily imply that more PCA’s
are proved in DL. The needed link between proof theoretic power and PCA’s is
provided by the following.

Theorem 2. In the absence of a background theory, first order dynamic logic
1s not conservative over Hoare’s Logic: there are PCA’s that are provable in
Dynamic Logic, but not in Hoare’s Logic.

Proof Outline. For k > 0, let PA; be Peano Arithmetic with Induction re-
stricted to ITj formulas. Let x be a universal sentence of the form Vz.t[z] =0
which is a theorem of PA but not of PA 1, for example a sentence expressing the
consistency of PA 1, i.e. the fact that no = codes a proof for PA; F 1. Referring
to the interpretation above of DL in PA, x? is the PCA [N(z)](t = 0), and so
the PCA

7w =g vIN(2)](t=0)

is provable in DL(().
Towards contradiction, suppose that 7 is provable in H(0). By [§], there are
then first order formulas &, for which the first order formula

@ AN(Cly (€] = &,[x])) — tlz] =0
is provable (in first order logic!), where
Cin[€] =ar €£[0] A Vz.8[z] = ¢[s2]

For each numeral 7, the formula Cly[€,] — &,[n] has a trivial n-step proof, so
for each n € N we obtain a first order proof D,, of v — t[n] = 0. Moreover,
normalizing D,, yields a proof purely in the language of Peano Arithmetic. This
entire argument is formalizable in PA;, with the conclusion that PA; proves
Va.t[z] = 0, contradicting the choice of t. 4

Note. The use of the nondeterministic program N(xz) is, again, inessential here;
the argument above can be modified to use the program N’(z) instead, albeit
with some loss of elegance.

312 D. Leivant

3.3 The Boundary of Conservativeness Is Peano’s Arithmetic

We have seen that DL is conservative over H in the presence of the complete first
order theory Th(N') of A, but is not conservative over H when the background
theory is empty. It is natural to ask for a transition point.

Since the proof theoretic power of DL itself is akin to that of Peano Arithme-
tic, as illustrated by the results of [IJ3[4], it is not surprising that the transition
point is Peano Arithmetic.

Theorem 3. Let T be a subtheory of Th(N).

1. If T ccontains Peano Arithmetic, then DL(T) is conservative over H(T).
2. DL(PA}) (or even DL(()) is not conservative over H(PAy).

Proof Outline. A straightforward approach for proving (1) is to emulate the
proof of Cook’s Relative Completeness Theorem, replacing the property “true
in N7 by “provable in DL(T).” However, this approach cannot work verbatim:
our axiomatization of DL (contrary to Harel’s [5]) allows non-standard models
for DL(T) (no matter what T is), and so we cannot have a provable variant of
expressiveness: there is no first order formula t[x] such that DL(T) «[z] +
(N@)) y = z.

Thus, we take a slightly different approach, and refer directly to first order
rendition of program semantics, rather than of weakest-preconditions. For each
regular program c, over variables x, one defines a first order formula p, [z, v] of
PA that coveys the input/output semantics of the program « over the structure
N . For instance, ua;ﬂ[f, v]is defined as 3z. p, [, Q]Aug[;, v), and p,. [z, 0]
is defined from p,, using sequence-coding. By induction on «, one then proves
that for all first-order formulas ¢,

H(PA) - (Yo. po[z, v]=¢[v]) [o] ¢[z] (1)

Also, all axioms of DL become provable in PA under the interpretation of
formulas ([a)€)[y] as Yv.p,[y, v] = &[v]; and the generalization rule of DL
becomes a derived rule of PA under that interpretation. Since T contains PA,
it follows that if DL(T) proves a PCA cp[]¢, where the free variables in «
are among z, then the formula @ A p [z, v] — {v/z}% is provable in T.
Combining thls with (), we obtain by the rule of Pre-Consequence of H that
plav is provable in H(PA).

The proof of (2) is similar to the proof of Theorem [2 !

4 A Dynamic Logic Conservative over Hoare’s Logic

4.1 The Dynamic Logic DLy,

The expressiveness of Dynamic Logic is far greater than that of Hoare’s Logic,
a gain which is valuable on many counts. For example, consider the extension

Partial Correctness Assertions Provable in Dynamic Logics 313

of Hoare’s Logic to account for recursive procedures. The added inference ru-
les refer (at least implicitly) to implications between PCA’s, rather than only
to PCA’s and first order formulas. However, Hoare’s logic has the advantage
of being syntax directed, so formal program annotations may be viewed as a
syntactic variant of Hoare’s Logic. Reconciling Dynamic Logic and Hoare’s Lo-
gic is therefore of both theoretical and practical interest.

We have seen in Theorem BJ] that this can be done when the background
theory is as powerful as PA. However, from a computational viewpoint, Peano
Arithmetic is an exceedingly powerful theory. Theorem Bl shows, therefore, that
from a practical viewpoint Dynamic Logic is far too powerful.

We therefore consider an alternative approach for reconciling Dynamic Logic
with Hoare Logic, namely weakening the deductive power of Dynamic Logic, to
match that of Hoare’s Logic. It is natural to consider here Dynamic Logic with
Segerberg’s Induction restricted to first-order (i.e. program free) formulas. We
write DLg, for DL so restricted.

At first blush, it is far from clear that this restriction is going far enough.
Segerberg’s Induction,

[](¢p—[a]e) = (p—=[a’]p)

even with ¢ program-free, has a premise that refers to states reachable by ite-
rated execution of a. This premise is weaker than the premise of the Invariance
Rule of Hoare Logic,

plaje

plat]e
Thus, the restricted form of Segerberg’s induction is stronger than the Invari-
ance Rule. Nonetheless, we show that when it comes to proving PCA’s, DLy, is
conservative over Hoare’s Logic, regardless of the background theory.

This said, we will use an auxiliary deductive calculus DLj;e,, formally weaker

than DLg,, in which Segerberg’s Induction is replaced by a rule of iteration:

Folale
Flate

We will not only tie Hoare’s Logic with DL¢,, but with a weak formalism
for second order logic, namely the Gentzen-Prawitz deductive calculus for logic
with relational quantification, but with comprehension restricted to first order
formulas.

4.2 Explicit Rendition of Program Semantics

The operational semantics of programs a € P can be defined explicitly within
an extension of first order logic with relational variables and quantification over
them (rather than via a numeric coding, as in the definition of the formulas g,
above). For each program a whose variables are among T=x1... x), we define
a formula M¥ = MF[z, v] with free variables among the 2k distinct variables

314 D. Leivant

z and v = vy . . vk, with the following property. For every V-structure S, and
every env1ronment n therein, S,n | MF [z, v] iff there is an execution of a
starting in environment 7 and terminating in environment n[x = nv].

Fora = w; :=t[z] Mz, v] = vizt[z]/\/\j#vj:xj
a= ?[z] MKz, v] = qz]lAv=1
a= 8 Mz, v] = Fu. Mi[z,u] A MF[u, v]
a= BU~y ME[z,v] = Mj[z,v]v Mz,]
a= g Mi[z,v] = vQ.Q(u) ACIQ) — Q(v)
where CIE[Q] = Vz,w. L R
Q(2) A Mz, w] = Q(w)

We omit the superscript £ when in no danger of confusion.

4.3 Explicit Rendition of Dynamic Logic Formulas

It is obvious how to use the formulas M, above to obtain an explicit rendition
“@” for each DL formula . Namely, if all variables in o are among © = 1 ...z,
then [a]e is rendered by

“Yale” =g Vo. Mz, v] = “p[v]”

Here v = v1...0, are fresh varlables mutually distinct and different from x
and ¢[v] stands for the result {v/ x}cp of simultaneously substitution v in ¢
for all free occurrences of .

Now, given any deductive calculus L whose underlying language includes
relational quantification, we can speak of the partial correctness theory of L,
PCA(L), namely the collection of those PCAs ¢p[a]tp whose explicit rendition

pla]yp” is provable in L. This definition has nothing to do with the proof theo-
retic strength of L: it can be spectacularly powerful, say logic in all finite types,
or extremely weak, such as second order logic with comprehension restricted to
quantifier free formulas.

4.4 Proof Formalisms for Second Order Logic

Since the set of valid second order formulas is not RE, there is no sound and
complete proof system for the language. Nonetheless, a widely used natural for-
malism for second order logic is obtained by extending first order logic with

Partial Correctness Assertions Provable in Dynamic Logics 315

variables and quantifiers over relations, and with the “set existence” (so-called
Comprehension) schema

V2 3RVu. R(u) ¢ ¥[u,z] R not free in 1 (2)

This schema may be conveyed by inference rules for relational quantifiers.
For natural deduction the rules for universal quantification over relations are

e[Q] VR e[R] -
TR ol ehay)) IET)

Here @[A\z 9] stands for the result of replacing every subformula R(t; ... t) of

N

@ by {t/ E}cp For the introduction rule one stipulates that @ is not free in
open assumptions,

Let Ly be the formalism for second order logic, as above. Trivially, Ly is sound
for the standard semantics of the relational variables. Although not complete, Lo
is a powerful formalism, e.g. full second order arithmetic (i.e. Classical Analysis)
is interpretable in it (see e.g. [11]).

Of considerable interest are sub-formalisms of Lo in which comprehension
is restricted to a class C of formulas, with no variables other than the ones
referred to in the Comprehension Schema. Alternatively, one requires that the
eigen-formula v in the rule of relational V-elimination, be in C. We focus here
on the case where comprehension is restricted to first order predicates, whose
parameters are global to the proof. That is,

IRVu. R(u) > ¥[u,] @ first-order, R not free in (3)

The “global parameters” 7 will correspond to the free variables occurring in
pre- and post-conditions of PCA’s.

4.5 The Formalism Lg.

We refer to first order logic with a distinction between wvariables, for which we
use u, v, w,u; ..., and (global) parameters, for which we use z,y,z; ... A Terms
are built using both variables and parameters, but the parameters are “global
to the proof”, and are not quantified. This distinction is useful in conveying the
restricted comprehension schema (B) by the inference rules below for relational
quantification.

We refer to the following sequential calculus. By sequent we mean is a pair,
written I' = A, where I' and A are finite sets of formulas. Such sequent is
initial if I'U A # (). Referring to implication and universal quantification as the
only logical operation aside from the logical constants T and L (which is no loss

4 Parameters will correspond to the free variables of pre- and post-conditions of PCA’s.
By referring to parameters we will be able to state an appropriate set existence
principle, which refer to formulas with parameters, but no free variables.

316 D. Leivant

of generality since the logic is classical), the inference rules are as follows. As
usual, we write I", ¢ for I' U {¢} (note that ¢ € I' is not excluded).

'e—=—=A I'= A 'y = A
Lip—ep=— A I'= A Y—p
It = A I' = A, p[v]
' \Vu.plu] = A I' = A Vu.p|u]

t a term substitutable for u in ¢ v not free in I, A
Il = A I' = A, ¢[Q]
I'VR.@[R] = A I' = A,VR.@[R]

R a relational variable arity (Q)=arity (R),
arity(z) = arity (R) 'Q not free in I', A
1) first-order
with all free variables among Z
(arbitrary parameters allowed)

Theorem 4. If a DL formula ¢ is provable in DLic,.(T), then the second order
formula “p” is provable in LY from T.

The proof is by induction on the proof of ¢ in DLjt,, and bears similarity
to the proof in [§] that if a PCA P is provable in DL(T) then “P” is provable
in LY from T.

4.6 DLiy,, L), and Hoare’s Logic

Theorem 5. Let T be a first order theory, @ a PCA. The following conditions
are equivalent.

1. 7 is provable in H(T).
2. m is provable in DLiy, (T).
3. “m” is provable in LY from T.

Proof. (1) implies (2) trivially. Theorem [4 establishes that (2) implies (3). (3)
implies (1) by the main result of [§]. (An alternative proof for the latter, using
a different method, is give in [9].) o

4.7 DLy, Is Conservative over Hoare’s Logic

Theorem 6. For every first order theory T, DL (T) is conservative over
DLje; (T) for PCA’s.

Partial Correctness Assertions Provable in Dynamic Logics 317

The proof uses an analysis of the structure of natural deduction derivations

for DL, and will be given in the full paper. (It bears similarity to the proof in
[10, Lemma 2| that the one-quantifier induction schema is conservative over the
one-quantifier induction rule for IT9 sentences.)

Combining Theorems[f] and Bl we obtain

Theorem 7. Let T be a first order theory. DL, (T) is conservative over H(T);
that is, every PCA provable in DL, (T) is provable in H(T).

References

1.

2.

10.

11.
12.

J.A. Bergstra and J.V. Tucker. Hoare’s Logic and Peano’s Arithmetic. Theoretical
Computer Science, 22:265-284, 1983.

Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. Computing, 7(1):70-90, 1978.

Petr Hajek. Arithmetical interpretations of Dynamic Logic. Jourmal of Symbolic
Logic, 48:704-713, 1983.

Petr Hajek. A simple dynamic logic. Theoretical Computer Science, 46:239-259,
1986.

David Harel. First-order Dynamic Logic. LNCS 68. Springer-Verlag, Berlin, 1979.
David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, Ca-
bridge, MA, 2000.

G. Kreisel. Mathematical logic. In T. Saaty, editor, Lectures on Modern Mathe-
matics, volume III, pages 95-195. John Wiley, New York, 1965.

Daneil Leivant. Logical and mathematical reasoning about imperative programs.
In Conference Record of the Twelfth Annual Symposium on Principles of Program-
ming Languages, pages 132—140, New York, 1985. ACM.

J.A Makowsky and I. Sain. Weak second order characterizations of various program
verification systems. Theoretical Computer Science, 66:299-321, 1989.

Charles Parsons. On n-quantifier induction. The Journal of Symbolic Logic, 37:466—
482, 1972.

D. Prawitz. Natural Deduction. Almqvist and Wiksell, Uppsala, 1965.

Krister Segerberg. A completeness theorem in the modal logic of programs (preli-
minary report). Notics of the American Mathematical Society, 24(6):A-552, 1977.

	Introduction
	Dynamic Logic and Arithmetic
	Dynamic Logic over Regular Programs
	An Interpretation of Peano Arithmetic in Dynamic Logic
	Interpreting Inductive Algebras

	Dynamic Logic vs. Hoare's Logic: The Role of the Background Theory
	Hoare's Logic for Regular Programs
	The Cases of Maximal and Minimal Background Theories
	The Boundary of Conservativeness Is Peano's Arithmetic

	A Dynamic Logic Conservative over Hoare's Logic
	The Dynamic Logic hbox {$hbox {relax fontsize {10}{12}normalfont abovedisplayskip 10p @ plus2p @ minus5p @ abovedisplayshortskip z @ plus3p @ belowdisplayshortskip 6p @ plus3p @ minus3p @ belowdisplayskip abovedisplayskip let leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ bf DL}_{hbox {relax fontsize {7}{8}normalfont rm fo}}$}
	Explicit Rendition of Program Semantics
	Explicit Rendition of Dynamic Logic Formulas
	Proof Formalisms for Second Order Logic
	The Formalism ${bf L}_2^0$.
	hbox {$hbox {relax fontsize {10}{12}normalfont abovedisplayskip 10p @ plus2p @ minus5p @ abovedisplayshortskip z @ plus3p @ belowdisplayshortskip 6p @ plus3p @ minus3p @ belowdisplayskip abovedisplayskip let leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ bf DL}_{hbox {relax fontsize {7}{8}normalfont rm iter}}$}, ${bf L}_2^0$, and Hoare's Logic
	hbox {$hbox {relax fontsize {10}{12}normalfont abovedisplayskip 10p @ plus2p @ minus5p @ abovedisplayshortskip z @ plus3p @ belowdisplayshortskip 6p @ plus3p @ minus3p @ belowdisplayskip abovedisplayskip let leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ bf DL}_{hbox {relax fontsize {7}{8}normalfont rm fo}}$} Is Conservative over Hoare's Logic

