Skip to main content

On O-Minimal Hybrid Systems

  • Conference paper
Hybrid Systems: Computation and Control (HSCC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2993))

Included in the following conference series:

  • 3110 Accesses

Abstract

This paper is driven by a general motto: bisimulate a hybrid system by a finite symbolic dynamical system. In the case of o-minimal hybrid systems, the continuous and discrete components can be decoupled, and hence, the problem reduces in building a finite symbolic dynamical system for the continuous dynamics of each location. We show that this can be done for a quite general class of hybrid systems defined on o-minimal structures. In particular, we recover the main result of a paper by Lafferriere G., Pappas G.J. and Sastry S. on o-minimal hybrid systems.

Mathematics Subject Classification: 68Q60, 03C64.

This work has been supported by a grant from the National Bank of Belgium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88, 971–984 (2000)

    Article  Google Scholar 

  4. Asarin, E., Schneider, G., Yovine, S.: On the Decidability of the Reachability Problem for Planar Differential Inclusions. In: Di Benedetto, M., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Kurshan, R.P., Clarke, E.M. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  6. Caucal, D.: Bisimulation of context-free grammars and push-down automata. In: Modal logic and process algebra, Stanford. CSLI Lecture Notes, vol. 53, pp. 85–106 (1995)

    Google Scholar 

  7. van den Dries, L.: o-Minimal Structures. In: Logic: from Foundations to Applications, European Logic Colloquium, pp. 137–185. Oxford University Press, Oxford (1996)

    Google Scholar 

  8. van den Dries, L.: Tame Topology and O-minimal Structures. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  9. Henzinger, T.A.: Hybrid automata with finite bisimulations. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)

    Google Scholar 

  10. Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)

    Chapter  Google Scholar 

  11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journal of Computer and System Sciences 57, 94–124 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  13. Lygeros, J., Godbole, D.N., Sastry, S.: Verified hybrid controllers for automated vehicles. IEEE Transactions on Automatic Control 43(4), 522–539 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lafferriere, G., Pappas, G.J., Sastry, S.: O-Minimal Hybrid Systems. Mathematics of control, signals and systems 13, 1–21 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: A study in multi-agent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Truss, J.: Infinite permutation groups II - subgroups of small index. J. Algebra 120, 494–515 (1989)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brihaye, T., Michaux, C., Rivière, C., Troestler, C. (2004). On O-Minimal Hybrid Systems. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Computation and Control. HSCC 2004. Lecture Notes in Computer Science, vol 2993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24743-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24743-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21259-1

  • Online ISBN: 978-3-540-24743-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics