Abstract
This paper is driven by a general motto: bisimulate a hybrid system by a finite symbolic dynamical system. In the case of o-minimal hybrid systems, the continuous and discrete components can be decoupled, and hence, the problem reduces in building a finite symbolic dynamical system for the continuous dynamics of each location. We show that this can be done for a quite general class of hybrid systems defined on o-minimal structures. In particular, we recover the main result of a paper by Lafferriere G., Pappas G.J. and Sastry S. on o-minimal hybrid systems.
Mathematics Subject Classification: 68Q60, 03C64.
This work has been supported by a grant from the National Bank of Belgium.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE 88, 971–984 (2000)
Asarin, E., Schneider, G., Yovine, S.: On the Decidability of the Reachability Problem for Planar Differential Inclusions. In: Di Benedetto, M., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 89–104. Springer, Heidelberg (2001)
Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model generation. In: Kurshan, R.P., Clarke, E.M. (eds.) CAV 1990. LNCS, vol. 531, pp. 197–203. Springer, Heidelberg (1990)
Caucal, D.: Bisimulation of context-free grammars and push-down automata. In: Modal logic and process algebra, Stanford. CSLI Lecture Notes, vol. 53, pp. 85–106 (1995)
van den Dries, L.: o-Minimal Structures. In: Logic: from Foundations to Applications, European Logic Colloquium, pp. 137–185. Oxford University Press, Oxford (1996)
van den Dries, L.: Tame Topology and O-minimal Structures. Cambridge University Press, Cambridge (1998)
Henzinger, T.A.: Hybrid automata with finite bisimulations. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 324–335. Springer, Heidelberg (1995)
Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the 11th Annual Symposium on Logic in Computer Science, pp. 278–292. IEEE Computer Society Press, Los Alamitos (1996)
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journal of Computer and System Sciences 57, 94–124 (1998)
Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)
Lygeros, J., Godbole, D.N., Sastry, S.: Verified hybrid controllers for automated vehicles. IEEE Transactions on Automatic Control 43(4), 522–539 (1998)
Lafferriere, G., Pappas, G.J., Sastry, S.: O-Minimal Hybrid Systems. Mathematics of control, signals and systems 13, 1–21 (2000)
Tomlin, C., Pappas, G.J., Sastry, S.: Conflict resolution for air traffic management: A study in multi-agent hybrid systems. IEEE Transactions on Automatic Control 43(4), 509–521 (1998)
Truss, J.: Infinite permutation groups II - subgroups of small index. J. Algebra 120, 494–515 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brihaye, T., Michaux, C., Rivière, C., Troestler, C. (2004). On O-Minimal Hybrid Systems. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Computation and Control. HSCC 2004. Lecture Notes in Computer Science, vol 2993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24743-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-24743-2_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21259-1
Online ISBN: 978-3-540-24743-2
eBook Packages: Springer Book Archive