Abstract
This paper presents a novel methodology for safety verification of hybrid systems. For proving that all trajectories of a hybrid system do not enter an unsafe region, the proposed method uses a function of state termed a barrier certificate. The zero level set of a barrier certificate separates the unsafe region from all possible trajectories starting from a given set of initial conditions, hence providing an exact proof of system safety. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes nonlinearity, uncertainty, and constraints can be handled directly within this framework. The method is also computationally tractable, since barrier certificates can be constructed using the sum of squares decomposition and semidefinite programming. Some examples are provided to illustrate the use of the method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Oliviero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)
Alur, R., Dang, T., Ivancic, F.: Progress on reachability analysis of hybrid systems using predicate abstraction. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 4–19. Springer, Heidelberg (2003)
Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)
Asarin, E., Dang, T., Maler, O.: The d/dt tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002)
Bemporad, A., Torrisi, F.D., Morari, M.: Optimization-based verification and stability characterization of piecewise affine and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 45–58. Springer, Heidelberg (2000)
Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)
Branicky, M.S.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Automatic Control 43(4), 475–482 (1998)
Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Automatic Control 48(1), 64–75 (2003)
Clarke, E.M., Kurshan, R.P.: Computer-aided verification. IEEE Spectrum 33(6), 61–67 (1996)
Johansson, M., Rantzer, A.: Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Trans. Automat. Control 43(4), 555–559 (1998)
Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1996)
Kurzhanski, A., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 203–213. Springer, Heidelberg (2000)
Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. J. Symbolic Computation 32(3), 231–253 (2001)
Megretski, A., Rantzer, A.: System analysis via integral quadratic constraints. IEEE Trans. Automatic Control 42(6), 819–830 (1997)
Murray, R.M. (ed.): Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. SIAM, Philadelphia (2003), Available at http://www.cds.caltech.edu/~murray/cdspanel
Papachristodoulou, A., Prajna, S.: On the construction of Lyapunov functions using the sum of squares decomposition. In: Proceedings IEEE CDC (2002)
Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, Caltech, Pasadena, CA (2000)
Prajna, S.: Barrier certificates for nonlinear model validation. In: Proceedings IEEE Conference on Decision and Control (2003)
Prajna, S., Papachristodoulou, A., Parrilo, P.A.: Introducing SOSTOOLS: A general purpose sum of squares programming solver. In: Proceedings IEEE CDC (2002), Available at http://www.cds.caltech.edu/sostools and http://www.aut.ee.ethz.ch/~parrilo/sostools
Shor, N.Z.: Class of global minimum bounds of polynomial functions. Cybernetics 23(6), 731–734 (1987)
Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)
Tomlin, C.J., Mitchell, I., Bayen, A.M., Oishi, M.: Computational techniques for the verification of hybrid systems. Proc. of the IEEE 91(7), 986–1001 (2003)
Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38(1), 49–95 (1996)
Yazarel, H., Pappas, G.: Geometric programming relaxations for linear systems reachability. Submitted to the American Control Conference (2004)
Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice-Hall, Inc., Upper Saddle River (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Prajna, S., Jadbabaie, A. (2004). Safety Verification of Hybrid Systems Using Barrier Certificates. In: Alur, R., Pappas, G.J. (eds) Hybrid Systems: Computation and Control. HSCC 2004. Lecture Notes in Computer Science, vol 2993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24743-2_32
Download citation
DOI: https://doi.org/10.1007/978-3-540-24743-2_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21259-1
Online ISBN: 978-3-540-24743-2
eBook Packages: Springer Book Archive