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Abstract. We study the problem of embedding arbitrary finite metrics
into a line metric in a non-contracting fashion to approximate the min-
imum average distortion. Since a path metric (or a line metric) is quite
restricted, these embeddings could have high average distortions (£2(n),
where n is the number of points in the original metric). Furthermore, we
prove that finding best embedding of even a tree metric into a line to
minimize average distortion is NP-hard. Hence, we focus on approzimat-
ing the best possible embedding for given input metric.

We give a constant-factor approximation for the problem of embedding
general metrics into the line metric. For the case of the metrics which
can be represented as trees, we provide improved approximation ratios
in polynomial time as well as a QPTAS (Quasi-Polynomial Time Ap-
proximation Scheme).

1 Introduction

Metric embeddings have recently attracted much attention in theoretical com-
puter science because of their many algorithmic applications. These range from
simplifying the structure of the input data for approximation and online prob-
lems [5,8,9,15,18,24], serving as a well-roundable relaxation of important NP-
hard problems [7,11-13,17,27] or simply by being the object of study [1,16]
arising from applications such as computational biology. Embedding techniques
have thus become an indispensable addition to the algorithms toolbox, provid-
ing powerful and elegant solutions to many algorithmic problems (see, e.g., [29,
Chapter 15] and [22]).

An embedding of a metric (V,d) into a “simpler” host metric (H,Jd) is a
map f : V — H; the embedding is a good one if the distances between points
in d closely resemble those between their images in §. An embedding is called
non-contracting if the map does not decrease any distances, i.e., d(z,y) <
5(f(z), f(y))* for all z,y € V. We restrict ourselves to non-contracting em-
beddings in this paper. Perhaps the most popular and useful measure of the
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quality of an embedding f is the distortion o = a(f), which is:

d(z,y)
d(z,y)"

distortion o = max; yev

A closely related measure is that of average distortion, which is

Duey @)

average distortion p(f) = D L
z,yEV ’

While many embedding techniques and algorithms are known, the analyses
for these embeddings usually only offer uniform bounds on the distortion of the
embeddings; few results which approzimate the distortion of the embeddings to
better than these uniform bounds. This is best shown by a concrete example:
Matousek [28] proved that any metric (V,d) can be embedded into the real line
with distortion O(|V|); furthermore, the result is existentially tight, as the n-
cycle cannot be embedded into the line with distortion o(|V|) (see, e.g., [31,21]).
However, no algorithm is known which offers per-instance guarantees; hence,
while it may be possible to embed (X,d) into IR with distortion o = O(1),
no algorithms are known which give us embeddings with distortion, say, that is
within O(|V ' 7€) times p! No results are known even when we replace distortion a
by average distortion p as the measure of goodness®.

1.1 Our Results

In this paper, we prove results for approximating the average distortion when em-
bedding metrics into the line IR (while ensuring that the map is non-contracting
). We can think of embeddings into a line as defining a tour on the nodes of
the original metric. Note that for an embedding to be non-contracting, it is
necessary and sufficient to have the distance between adjacent pair of vertices
in the tour to be the same as their distance in the input metric. Our results
demonstrate a close relationship between minimizing average distortion and the
problems of finding short TSP tours [25], minimum latency tours [10,20, 4], and
optimal k-repairmen solutions[14]. In particular, we prove the following results.

— Hardness for average distortion: We prove that the problem of finding
a minimum average distortion non-contracting embedding of finite metrics
into the line is NP-hard, even when the input metric is a tree metric. This
is proved via a reduction from the Minimum Latency Problem on trees [33].

— Constant-factor approximations: We give an algorithm that embeds any
metric (V,d) into the line with average distortion that is within a constant
of the minimum possible over all non-contracting embeddings. In fact, we
prove a slightly more general bound on non-contracting embeddings into k-
spiders (i.e., homeomorphs of stars with k leaves). This result uses a lower

® One notable exception is the remark of Linial et al. [27] that the optimal embedding
of any finite metric into (unbounded dimensional) Euclidean spaces to minimize
distortion can be computed as a solution to a semi-definite program.



bound on the minimum average distortion of a non-contracting embedding
into a k-spider in terms of the minimum k-repairmen tour [14] on the metric.
We also show a tightened result for the case of 2-spiders using ideas from
constructing minimum latency tours [20].

— QPTAS on trees: For tree metrics on n nodes, we give an algorithm for
finding a (1 + €)-approximation to the minimum average distortion non-
contracting embedding into a line in n®(°8 n/€*) time. Our algorithm uses

a lower bound on the minimum average distortion related to the TSP tour

length and latencies of appropriately chosen segments of an optimal tour.

In this way, it extends the ideas of Arora & Karakostas [6] for minimizing

latency on trees to the more general time-dependent TSPs [10] to provide a

QPTAS for the latter problem as well.

Given a tree metric as input, if the minimum average distortion is measured
only over the endpoints of the edges of the tree (we call this objective the average
tree-edge distortion), we can prove that an embedding following an Euler tour
of the tree is optimal. This tour can be found in polynomial time by dynamic
programming. We omit the description of this algorithm due to lack of space.

1.2 Related Work

The definition of average distortion is by no means new; e.g., Alon et al. [2] study
the question of embedding a metric into a tree with low average distortion. In
recent work on average distortion that is closer to our work, Rabinovich [30]
proves bounds on average distortion of non-erpanding embeddings into a line
and shows the close connection between this and the max-flow min-cut ratio for
concurrent multicommodity flow with applications to finding quotient cuts in
graphs [26].

Our problem is similar to that of finding the Minimum Linear Arrangement
(MLA), for which Rao & Richa [32] gave an O(logn) approximation using the
notion of spreading metrics. However, while the MLA problem involves mini-
mizing the average stretch of the edges } ¢, yep|m(u) — (v)| under all maps
7 : V — [n], the mappings in our problem are f : V — IR, and must ensure that
F() = ()] > d(u,v) Y{u, 0} € V x V.,

The problem of finding Minimum Latency tours (a.k.a. the traveling repair-
man problem) is most relevant to our discussion in terms of techniques used.
This problem requires a repairman who starts from a depot on a given finite
metric to visit n customers, one at each node of the metric; his goal is to min-
imize the average waiting time or latency of the customers, where the waiting
time of a customer is the sum of the distances of all edges traversed by the re-
pairman before visiting this customer. The version of this problem with only one
repairman (also called the Minimum Latency Problem) is known to be NP-hard
even on trees [33] and MAX-SNP hard in general [10]. The first constant-factor
approximation for this problem was given by Blum et al.[10], which was subse-
quently improved by Goemans and Kleinberg [20] to the currently best-known



bound of 7.18. Recently, Archer, Levin and Williamson [4, 3] gave faster algo-
rithms obtaining very similar approximation guarantees. For the special cases
of the latency problem on trees, and in IR? for fixed dimension d, Arora and
Karakostas [6] gave quasi-polynomial time approximation schemes (QPTAS).
The extension of the latency problem to more than one repairmen was recently
studied in [14] where the authors show a 16.994-approximation for the general
k-repairman case.

Finally, a problem that generalizes both the cost of a tour as well as its latency
into one objective is that of finding time dependent TSP tours. A constant factor
approximation algorithm is also known for this problem [10].

Outline: The rest of the paper is organized as follows. In Section 2, we argue that
the embedding problem is NP-hard, and give the constant-factor approximation
algorithm for embedding metrics into the line with constant average distortion.
Section 3 shows the QPTAS for the case of trees metrics as inputs.

2 Embedding arbitrary metrics into the line

In this section, we show that we can approximate the average distortion into
a line for a given metric to within a constant; to this end, we show that the
problem is closely related to that of finding the minimum latency tours and
its generalizations in a finite metric space. We omit the proof of the following
theorem; the reduction is from Minimum Latency on trees.

Theorem 1. It is NP-hard to find a non-contracting embedding of a given met-
ric induced by a tree into a line that minimizes the average distortion.

First, we show a simple 2-approximation for embedding a finite metric into
a special kind of tree metric, namely a k-spider. (A k-spider is a tree with all
vertices except the center having degrees 1 or 2, and hence is a homeomorph of
the star with k leaves). The case of a n-spider or a complete star is more natural
to argue about, while the 2-spider is a path giving our main result.

Embeddings into trees Consider the problem of embedding the given metric d
into a tree metric  to minimize average distortion. Let A = nyyev d(z,y)
denote the sum of all the distances in the metric d, and hence av(d) = A/n? is
the average distance in d. The median of the metric d is the point v € V that
minimizes A, = ) . d(v,w), and will be denoted by med. Note that we can
decompose A as follows:

A = ZU,UEV d(uﬂv) = ZUEV(ZUGV d(u,v)) = ZUGV Au Z nAmed (]-)

since A,eq < A, for all v € V. Consider a shortest-path tree 7' (which is a star
in a general metric d) rooted at med, and let dy denote the metric induced by
this shortest path tree. Then the total distance in this tree T is

Ap = n2. aV(dT) = Zu,vev dT(U; U) < Zu,veV dT(med, u) + dT(mecL ,U)
= ZU,UEV d(med7 u) + d(med, U) = QnAmed



where the inequality in the second step is just the triangle inequality. This implies
that nAeq < A < A < 2nA,eq, and thus:

Lemma 1 (See also [34]). Given any graph, the average distance Ar for the
tree rooted at the median is at most 2 A, and is a 2-approzimation for the problem
of embedding the graph into trees.

Note here that the bound of 2 above is an absolute bound on the worst-case
ratio between the average distance in the output tree and the graph, and is in the
same flavor as the more traditional results on bounding the maximum distortion
of embeddings. We next move toward an approximation approach by restricting
the class of trees into which we embed.

Embeddings into spiders We now generalize the previous result to the case
of embeddings into k-spiders. The vertex of degree k is called the center of
the spider, and the components obtained by removing the center are called its
legs [23].

Let d;, denote the optimal k-spider embedding. We decompose the sum of
distances in dj, as the sum of k-repairman paths rooted at each vertex. Recall
that, in k-traveling repairman problem, we are given k repairmen starting at a
common depot s. The k repairmen are to visit n customers sitting one per node of
the input metric space. The goal is to find tours on which to send the repairmen
so as to minimize the total time customers have to wait for a repairman to
arrive [14].

Let ¢ be the center of the spider in the optimal k-spider embedding. To
construct a k-repairman paths starting from a vertex r, we do the following.
We send one repairman away from the center along the leg of the spider which
contains r. The other k£ — 1 repairmen travel toward the center ¢ of the spider.
From the center, they go off, one per remaining leg of the spider. The cost of
this k-repairman tour is A7 = . dj(r, j). Summing over all choices of the root
we see that this is same as the sum of distances in the embedding dj,.

Yvey Ar =n? - av(dy)

veV v

Hence, n times the cost of the cheapest k-repairman tour over all choices of
the depots (denoted by A°P?)) is a lower bound on the sum of all the distances.
ie.,

> uvev di(u,v) 2 min, { A%t}

Consider the cheapest k-repairman tour over all choices of centers. Let it
be centered at a vertex c. This tour defines a non-contracting embedding into
a k-spider with ¢ at the center of the spider. Let d(u) denote the distance of
vertex u from the center ¢ in the tour. We can bound the sum of distances in
this embedding as follows:

Zu,vEV dz (u7 U) S Zu,vEV de (u) + dC(,U) S 2n ZUEV d° (u) S 2 Zuwev d; (u’ U)'

Thus, if we could compute the optimal k-repairman tour centered at ¢ exactly,
we would obtain a 2-approximation to the problem of embedding the metric



into k-spiders. Although the problem of finding an optimal k-repairman tour is
NP-hard, the argument above proves the following.

Theorem 2. Given a y-approrimation for the minimum k-repairmen problem
on a metric d, we can obtain a 2v-approrimation for embedding the metric d
into a k-spider in a non-contracting fashion to minimize the average distortion.

The current best known approximation factor for the k-repairman problem is
about 17 (due to Fakcharoenphol et al. [14]), leading to the following corollary.

Corollary 1. There is a 34-approzimation for minimizing the average distor-
tion of a mon-contracting embedding of a given finite metric into a k-spider.

Embeddings into a line: Improved guarantee We can get a better ap-
proximation factor for embeddings into the line by employing a slightly different
strategy. Instead of using the result of Fakcharoenphol et al.as a black box, we
instead give an algorithm to find a l-repairman tour (i.e., a minimum latency
tour) that is within a factor of 14.36 of the optimum 2-repairmen tour in the
given metric. Since a l-repairman tour is also a 2-repairmen tour (with the sec-
ond repairman doing nothing), we can then apply Theorem 2 to bring down the
overall approximation ratio to 28.72.

The idea behind the algorithm is the same as in scaled search, due to Blum
et al. [10]; here is an outline. To find a 1-repairman solution centered at r:

for 7=0,1,2,3,...,do

T; < tree rooted at r spanning the most vertices among those

with cost < 27%2,
Concatenate Euler tours of the trees T; (in increasing order of j), to form
a l-repairman path.

Lemma 2. The cost of the 1-repairman tour produced by the preceding algorithm
is within a factor 32 of the cheapest 2-repairman tour.

Proof. Let vertex v be the ith closest vertex to root r in the optimal 2-repairman
tour. Let the distance of v from the root r in the tour be between [27, 29%1) in the
optimal solution. Consider the tree T} of cost 2772 constructed by our algorithm.

We claim that T} spans at least ¢ vertices. Thus cost of ith vertex in our tour
has latency at most

I_, (cost of ith tour) < ST 22012 < 9t

Hence, the distance of the it vertex in our 1-repairman tour is at most 16 times
its counterpart in the optimal 2-repairmen tour.

Although the problem of finding the largest tree with cost at most 22 is
NP-hard, we can find a tree having as many vertices as the this optimal tree
instead (but with cost at most 2 - 2/%2 using Garg’s [19] algorithm for i-MST.
This increases the overall approximation factor to 16 - 2 = 32.



Lemma 3. We can find a 1-repairman tour with cost < 14.36 times the cost of
the cheapest 2-repairman tour.

Proof. (Sketch) Let b be a real number greater than 1 to be chosen later. Let
c = bY, where U is a real number chosen uniformly at random from the interval
[0,1]. Instead of finding the trees of cost 2,4, 8, ... which cover the most vertices,
we will find the trees of cost at most 2c,2cbh,2cb?,... which cover the most
vertices. Using the methods of Goemans and Kleinberg, we can show that the
approximation ratio of the previous proof can be improved to 14.36.

Note that this improves on the result of Fakcharoenphol et al. [14] for the
special case of the 2-repairman problem. An application of Theorem 2 now gives
us the following:

Theorem 3. There exists a 28.72-approximation algorithm to embed a given
(weighted) metric it into a line in a non-contracting fashion to minimize the
average distortion.

As a consequence of the analysis in Lemma 2, we also get the following result:

Lemma 4. Forl < k, we can find an l-repairman tour with cost at most 17 (k/1)
times that of the optimal k-repairman tour.

We note that the factor % in the above Lemma is necessary as demonstrated
by the metric induced by an unweighted star graph. Compare the above result
to that of Fakcharoenphol et al. [14] which outputs a k-repairmen tour of cost
O(%) times the minimum [-repairmen tour for k > [ (where the factor % is not
necessary since the algorithm delivers a solution with more repairmen than the
optimal compared against).

3 Approximation Schemes for trees

In this section, we restrict our attention to the special case of tree metrics. We
give a quasi-polynomial time approximation scheme for minimizing the average
distortion for embeddings into the line metric. Our algorithm is based on the
QPTAS given by Arora and Karakostas for the minimum latency problem [6].
They proved that a near-optimal latency tour can be constructed by concate-
nating O(log |V'|/€) optimal TSP subtours, and the best such solution can be
found by dynamic programming.

For an embedding f : V' — IR into the line, let the span of the embedding be
defined as max, , | f(z) — f(y)|, the maximum distance between two points on
the line. We note that an embedding with the shortest span is just the optimal
TSP tour. While embedding a given metric into the line metric, minimizing the
span of the embedding could result in very high average distortion. However,
we show that it suffices to minimize the span locally to find near optimal em-
bedding. In particular, our solution within (1 + €) of optimal minimum average
distortion is to find an embedding that is the union of O(log |V|/€*) TSP tours
with geometrically decreasing number of vertices.



In the sequel, we use n to denote |V|, the number of vertices. For our algo-
rithm, we assume that all the edge lengths are in the range [1,12/¢]. Indeed, if
D is the diameter of the metric space and u and v are two vertices such that
d(u,v) = D, then }-, v d(z,y) > >,y d(z,u) + d(z,v) > nD. We can then
merge all pairs of nodes with inter-node distance at most eD/n?, which affects
the sum of distance by at most enD. Hence the ratio of maximum to minimum
nonzero distance in the metric can be assumed to be n?/e.

Relation to TDTSPs We first show that the Arora-Karakostas QPTAS works
also for the case of Time Dependent Traveling Salesman Problem (TDTSP)
defined by Blum et al.. In the TDTSP, the objective is to minimize a positive
linear combination of the TSP tour value and the total latency of the tour. The
intuition behind this is that adding a component of TSP in the objective value
preserves the property that the tour composed of TSP tours continues to remain
near-optimal.

We now describe how to break up an optimal tour into locally optimal seg-
ments. Let 7 denote the optimal tour for the objective function «T'SP + BLAT
where TSP and LAT denote the span and latency objective values of the tour
respectively. We break this tour into k segments (k depends on the input pa-
rameter €). In segment ¢ we visit n; nodes, where

ni=[1+er 1= fori=1,...,k—1; ng = [1/€]

Note that these n;’s are chosen in such a way that n; < ezj>in]~. Denote
> j>i M by r;. Replace the optimal tour in each segment, except the last one, by
the minimum-distance traveling salesman tour for that segment. The new tour
now cousists of the concatenation of O(logn/e) locally optimal TSP tours. This
gives us the following lemma.

Lemma 5. There is a tour that is a concatenation of O(logn/e) TSP tours that
has TSP + BLAT objective value at most (1 + €) times the minimumn.

We now use the Lemma 5 to show the following theorem for average distance.

Theorem 4. Any finite metric has a non-contracting embedding into a line that
is composed of O(logn/e*) minimum TSP tour segments with average distortion
no more that (1 + €) times the minimum possible over all such embeddings.

Proof. Our strategy is same as in Lemma 5. Consider the optimal embedding of
the input tree into a line. We break this embedding up into O(log n/e) segments.
Let n; be the size of ¢th segment defined as before. We now divide the objective
function value according to the segments, so that only the share C; of segment
i changes, if we replace the embedding of segment ¢ with a different embedding.

Let T; be the length of the embedding of segment i. If iy is the left-most
node in the embedding of the segment ¢, then let L; = ZjEm I(ig,j) be the sum
of the distances of all nodes in segment i from node v. Note that L; is the total



latency of vertices in segment i with 4o as root. And let D; = "
the sum of all the pairwise distances in segment .

Let ¢; = Zj@. nj and r; = Zj>i nj be the number of total nodes to the left
and right of segment 7 respectively.

The contribution of the segment i to the objective comes from the following
distinct terms.

[(u,v) be

u,veEN;

1. If a vertex u is to the left of the segment ¢ and a vertex v is to the right,
then the segment i adds T; to the distance between them.

2. If a vertex u is to the left and w is in the segment ¢, then the contribution
is (o, w) = the distance from the left most vertex ip of the segment i to w.

3. If a vertex v is to the right and w is in the segment i, then the contribution
is T; — l(ip, w).

4. If both the vertices w and w' are in the segment ¢, then the contribution is
Hw,w").

These contributions, when summed up over all pairs of vertices, give:
Ci = qiriTi + qiLi + T@(nth — Li) + Di (2)

Note that D; < n?T;. For i = 2,... k, we know that n; < ¢; and n; < e-r;.
Hence, comparing D; with the first term in (2), we get

(1 +€)(qiriTi + qiLi + ri(niT; — Ly)) > C; > qiri Ty + qiLg + 13(niTs — L) (3)

To prove the statement in Theorem 4, it suffices to find a tour that is within
(14 €) of the lower bound in the RHS of the above inequality 3. The expression
for the lower bound on the RHS of inequality 3 is a linear combination of TSP
and Latency values of the tour in segment ;. We can apply Lemma 5 to obtain
a tour composed of O(logn;/€) TSP tours. This tour is within (1 + €) factor of
the lower bound on C;.

A technical detail in this argument is that the coefficient of L; could be
negative. Lemma 5 does not handle this case. But note that n;T; — L; is the
total “reverse” latency in segment ¢ with the rightmost endpoint being the root.
Thus we can rewrite the lower bound as a linear combination of T; and n;T; — L;
with positive coefficients.

We can thus replace each segment i, with a concatenation of O(logn;/€) TSP
tours, without increasing the cost by more than a factor of (1 + €). Since there
are O(logn/e) segments in all, it follows that there is an embedding consisting
of O(log® n/€?) shortest TSP tours.

Finally, we show how to reduce this number down to O(logn/e?). Let us
rewrite the lower bound in (3) as (¢; — ;) L; + (¢; + n;)r;T;. Note that L; < n;T;.
This gives us that the term (¢; — r;)L; is at most € - (¢; + n;)r;T;, whenever
q; — i is positive. Hence, if we replace the segment i with a shortest TSP tour
on those vertices, the cost will be within (1 + €) of the lower bound in (3). It is
easy to check that, for i > 1/¢, we have g; > r;. Hence for i = 1,...,1/¢, using
Lemma 5, we replace each segment by a concatenation of O(logn/e) tours each.



Then for the segments ¢ and above, we use only one minimum TSP tour. Overall
this results in a concatenation of O(logn/e?) tours with near-optimal average
distortion.

Note that, an optimal TSP tour of the tree is an Euler tour. In other words,
each edge is crossed exactly twice, once in each direction. As a consequence, we
have the following.

Theorem 5. There exists a non-contracting embedding of a tree metric into a
line with average distortion at most (1 + €) times the minimum possible that,
when viewed as a walk, crosses every tree edge O(logn/€?) times.

Now using dynamic programing using these structural results proves the
following theorem.

Theore1121 6. For any given € > 0, there is an algorithm that runs in time
nPUosn/) and computes a non-contracting embedding of a given input tree met-
ric into a line with average distortion at most (1 + €)-times the minimum.

Proof. (Sketch)

We now describe the quasi-polynomial-time approximation scheme based on
dynamic programming. Theorem 5 can be restated in terms of crossings of ver-
tices. Consider a separator vertex for the tree. We will denote the partition of
the tree at the centroid as the left and right parts. There exists a near optimal
embedding that, when viewed as a tour, crosses the separator node from left half
to right half O(logn/€?) times.

We develop a dynamic program based on the above observation. Given the
input tree, we try each vertex as the starting point of our tour. In order to
compute the tour, we first find a separator node in the tree. For the dynamic
program, we maintain the following state space. Consider the sub-tours formed
between successive places where we cross the separator node. We guess the num-
ber of nodes and the length for each of these sub-tours. Note that since there
are only O(logn/€®) crossings, there are only n®°¢ n/€*) choices for the number
of nodes. Moreover, the length of each tour can take at most O(logn/e) differ-
ent values. Thus the number of choices for the length are bounded by about
O((logn)'°8 ™). Thus the total size of state space is n°1°8"/<*)_ Finding the best
tour given the lengths of sub-tours can be done by recursing on the left and right
parts independently. For each of these sub-tours, we want to visit all the vertices
while staying on one side throughout. The total running time of this procedure

is nO(log n/ez)'

4 Open Problems and Discussion

It is important to note that a non-contracting embedding can be converted to
a non-expanding embedding by scaling down all the distances. However, the
converse is not true, since in non-expanding embeddings, the host metric could
be a semi-metric. In other words, mapping two points in the guest metric to



the same point in the host metric is allowed. This represents a crucial difference
between the two problems.

For the case of non-contracting embeddings considered in the paper, here are
some open questions :
(1) Is there a simpler and better approximation algorithm for minimizing average
distortion in trees?
(2) Can the Quasi-PTAS be extended to (outer)planar graphs?
(3) A different but related objective function is sum of the distortions of all
pairs over all non-contracting embeddings. Are there approximation algorithms
for this objective?
(4) For the case of weighted average distance, we can write a linear program
based on the spreading metric LP for minimum linear arrangement (4 la Rao &
Richa [32]). However, the integrality gap of this LP is as yet unknown.
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