Abstract
We study the problem of embedding arbitrary finite metrics into a line metric in a non-contracting fashion to approximate the minimum average distortion. Since a path metric (or a line metric) is quite restricted, these embeddings could have high average distortions (Ω(n), where n is the number of points in the original metric). Furthermore, we prove that finding best embedding of even a tree metric into a line to minimize average distortion is NP-hard. Hence, we focus on approximating the best possible embedding for given input metric.
We give a constant-factor approximation for the problem of embedding general metrics into the line metric. For the case of the metrics which can be represented as trees, we provide improved approximation ratios in polynomial time as well as a QPTAS (Quasi-Polynomial Time Approximation Scheme).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agarwala, R., Bafna, V., Farach, M., Narayanan, B.O., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics). In: SODA, pp. 365–372 (1996)
Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)
Archer, A., Levin, A., Williamson, D.P.: A faster, better approximation algorithm for the minimum latency problem. Cornell ORIE Technical Report number 1362 (2003)
Archer, A., Williamson, D.P.: Faster approximation algorithms for the minimum latency problem. In: SODA (2003)
Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)
Arora, S., Karakostas, G.: Approximation schemes for minimum latency problems. In: Proceedings of the ACM STOC, pp. 688–693 (1999)
Aumann, Y., Rabani, Y.: An o(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)
Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: IEEE FOCS, pp. 184–193 (1996)
Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)- competitive algorithm for metrical task systems. In: Proceedings of STOC, pp. 711–719 (1997)
Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the ACM STOC, pp. 163–171 (1994)
Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. In: Proceedings of the 30th ACM STOC, pp. 100–105 (1998)
Bourgain, J.: On lipshitz embedding of finite metric spaces in hilbert space. Israel J. Math. 52, 46–52 (1985)
Calinescu, G., Karloff, H.J., Rabani, Y.: Approximation algorithms for the 0-extension problem. In: SODA, pp. 8–16 (2001)
Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: SODA: 14th ACM-SIAM Symposium on Discrete Algorithms (2003)
Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM STOC, pp. 448–455 (2003)
Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13(1/2), 155–179 (1995)
Feige, U.: Approximating the bandwidth via volume respecting embeddings (extended abstract). In: Proc. 30th ACM STOC, pp. 90–99 (1998)
Garg, Konjevod, Ravi: A polylogarithmic approximation algorithm for the group steiner tree problem. In: SODA (1998)
Garg, N.: Personal communication (September 2000)
Goemans, Kleinberg: An improved approximation ratio for the minimum latency problem. In: SODA (1996)
Gupta, A.: Steiner nodes in trees don’t (really) help. In: SODA (2001)
Indyk, P.: Algorithmic aspects of geometric embeddings. In: IEEE FOCS (2001)
Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. J. Algorithms 19(1), 104–115 (1995)
Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and markov random fields. In: IEEE FOCS, pp. 14–23 (1999)
Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem. John Wiley & Sons, Chichester (1985)
Leighton, F.T., Rao, S.: An approximate max-flow mincut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proc. of the 29th IEEE FOCS, pp. 422–431 (1988)
Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)
Matoušek, J.: Bi-lipschitz embeddings into low dimensional euclidean spaces. Comment. Math. Univ. Carolinae 31(3), 589–600 (1990)
Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)
Rabinovich, Y.: On average distortion of embedding metrics into l1 and into the line. In: 35th Annual ACM STOC (2003)
Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric spaces in graphs. GEOMETRY: Discrete & Computational Geometry 19 (1998)
Rao, S., Richa, A.: New approximation techniques for some ordering problems. In: SODA (1998)
Sitters, R.A.: The minimum latency problem is np-hard for weighted trees. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 230–239. Springer, Heidelberg (2002)
Wong, R.T.: Worst-case analysis of network design problem heuristics. SIAM Journal Alg. Disc. Math. 1(1), 51–63 (1980)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dhamdhere, K., Gupta, A., Ravi, R. (2004). Approximation Algorithms for Minimizing Average Distortion. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-24749-4_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-21236-2
Online ISBN: 978-3-540-24749-4
eBook Packages: Springer Book Archive