Skip to main content

Approximation Algorithms for Minimizing Average Distortion

  • Conference paper
STACS 2004 (STACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Included in the following conference series:

  • 705 Accesses

Abstract

We study the problem of embedding arbitrary finite metrics into a line metric in a non-contracting fashion to approximate the minimum average distortion. Since a path metric (or a line metric) is quite restricted, these embeddings could have high average distortions (Ω(n), where n is the number of points in the original metric). Furthermore, we prove that finding best embedding of even a tree metric into a line to minimize average distortion is NP-hard. Hence, we focus on approximating the best possible embedding for given input metric.

We give a constant-factor approximation for the problem of embedding general metrics into the line metric. For the case of the metrics which can be represented as trees, we provide improved approximation ratios in polynomial time as well as a QPTAS (Quasi-Polynomial Time Approximation Scheme).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwala, R., Bafna, V., Farach, M., Narayanan, B.O., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics). In: SODA, pp. 365–372 (1996)

    Google Scholar 

  2. Alon, N., Karp, R.M., Peleg, D., West, D.: A graph-theoretic game and its application to the k-server problem. SIAM J. Comput. 24(1), 78–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  3. Archer, A., Levin, A., Williamson, D.P.: A faster, better approximation algorithm for the minimum latency problem. Cornell ORIE Technical Report number 1362 (2003)

    Google Scholar 

  4. Archer, A., Williamson, D.P.: Faster approximation algorithms for the minimum latency problem. In: SODA (2003)

    Google Scholar 

  5. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Arora, S., Karakostas, G.: Approximation schemes for minimum latency problems. In: Proceedings of the ACM STOC, pp. 688–693 (1999)

    Google Scholar 

  7. Aumann, Y., Rabani, Y.: An o(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27(1), 291–301 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bartal, Y.: Probabilistic approximations of metric spaces and its algorithmic applications. In: IEEE FOCS, pp. 184–193 (1996)

    Google Scholar 

  9. Bartal, Y., Blum, A., Burch, C., Tomkins, A.: A polylog(n)- competitive algorithm for metrical task systems. In: Proceedings of STOC, pp. 711–719 (1997)

    Google Scholar 

  10. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the ACM STOC, pp. 163–171 (1994)

    Google Scholar 

  11. Blum, A., Konjevod, G., Ravi, R., Vempala, S.: Semi-definite relaxations for minimum bandwidth and other vertex-ordering problems. In: Proceedings of the 30th ACM STOC, pp. 100–105 (1998)

    Google Scholar 

  12. Bourgain, J.: On lipshitz embedding of finite metric spaces in hilbert space. Israel J. Math. 52, 46–52 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Calinescu, G., Karloff, H.J., Rabani, Y.: Approximation algorithms for the 0-extension problem. In: SODA, pp. 8–16 (2001)

    Google Scholar 

  14. Fakcharoenphol, J., Harrelson, C., Rao, S.: The k-traveling repairman problem. In: SODA: 14th ACM-SIAM Symposium on Discrete Algorithms (2003)

    Google Scholar 

  15. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the 35th Annual ACM STOC, pp. 448–455 (2003)

    Google Scholar 

  16. Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13(1/2), 155–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feige, U.: Approximating the bandwidth via volume respecting embeddings (extended abstract). In: Proc. 30th ACM STOC, pp. 90–99 (1998)

    Google Scholar 

  18. Garg, Konjevod, Ravi: A polylogarithmic approximation algorithm for the group steiner tree problem. In: SODA (1998)

    Google Scholar 

  19. Garg, N.: Personal communication (September 2000)

    Google Scholar 

  20. Goemans, Kleinberg: An improved approximation ratio for the minimum latency problem. In: SODA (1996)

    Google Scholar 

  21. Gupta, A.: Steiner nodes in trees don’t (really) help. In: SODA (2001)

    Google Scholar 

  22. Indyk, P.: Algorithmic aspects of geometric embeddings. In: IEEE FOCS (2001)

    Google Scholar 

  23. Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. J. Algorithms 19(1), 104–115 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification problems with pairwise relationships: Metric labeling and markov random fields. In: IEEE FOCS, pp. 14–23 (1999)

    Google Scholar 

  25. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (eds.): The Traveling Salesman Problem. John Wiley & Sons, Chichester (1985)

    MATH  Google Scholar 

  26. Leighton, F.T., Rao, S.: An approximate max-flow mincut theorem for uniform multicommodity flow problems with applications to approximation algorithms. In: Proc. of the 29th IEEE FOCS, pp. 422–431 (1988)

    Google Scholar 

  27. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. Matoušek, J.: Bi-lipschitz embeddings into low dimensional euclidean spaces. Comment. Math. Univ. Carolinae 31(3), 589–600 (1990)

    MATH  Google Scholar 

  29. Matoušek, J.: Lectures on Discrete Geometry. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  30. Rabinovich, Y.: On average distortion of embedding metrics into l1 and into the line. In: 35th Annual ACM STOC (2003)

    Google Scholar 

  31. Rabinovich, Y., Raz, R.: Lower bounds on the distortion of embedding finite metric spaces in graphs. GEOMETRY: Discrete & Computational Geometry 19 (1998)

    Google Scholar 

  32. Rao, S., Richa, A.: New approximation techniques for some ordering problems. In: SODA (1998)

    Google Scholar 

  33. Sitters, R.A.: The minimum latency problem is np-hard for weighted trees. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 230–239. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  34. Wong, R.T.: Worst-case analysis of network design problem heuristics. SIAM Journal Alg. Disc. Math. 1(1), 51–63 (1980)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dhamdhere, K., Gupta, A., Ravi, R. (2004). Approximation Algorithms for Minimizing Average Distortion. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics