Skip to main content

A Direct Proof of Strong Normalization for an Extended Herbelin’s Calculus

  • Conference paper
Functional and Logic Programming (FLOPS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2998))

Included in the following conference series:

Abstract

Herbelin presented (at CSL’94) an explicit substitution calculus with a sequent calculus as a type system, in which reduction steps correspond to cut-elimination steps. The calculus, extended with some rules for substitution propagation, simulates β-reduction of ordinary λ-calculus. In this paper we present a proof of strong normalization for the typable terms of the calculus. The proof is a direct one in the sense that it does not depend on the result of strong normalization for the simply typed λ-calculus, unlike an earlier proof by Dyckhoff and Urban.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. Journal of Functional Programming 1, 375–416 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bloo, R.: Preservation of strong normalisation for explicit substitution. Computing Science Report 95-08, Eindhoven University of Technology (1995)

    Google Scholar 

  3. Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Eindhoven University of Technology (1997)

    Google Scholar 

  4. Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. Theoretical Computer Science 211, 375–395 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bloo, R., Rose, K.H.: Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection. In: Proceedings of CSN 1995 (Computing Science in the Netherlands), pp. 62–72 (1995)

    Google Scholar 

  6. Bonelli, E.: Perpetuality in a named lambda calculus with explicit substitutions. Mathematical Structures in Computer Science 11, 47–90 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dougherty, D., Lescanne, P.: Reductions, intersection types, and explicit substitutions. Mathematical Structures in Computer Science 13, 55–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dyckhoff, R., Pinto, L.: Proof search in constructive logic. In: Cooper, S.B., Truss, J.K. (eds.) Proceedings of the Logic Colloquium 1997. London Mathematical Society Lecture Note Series, vol. 258, pp. 53–65. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  9. Dyckhoff, R., Urban, C.: Strong normalisation of Herbelin’s explicit substitution calculus with substitution propagation. In: Proceedings of WESTAPP 2001, pp. 26–45 (2001)

    Google Scholar 

  10. Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution calculus with substitution propagation. Journal of Logic and Computation 13, 689–706 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Espírito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Herbelin, H.: A λ-calculus structure isomorphic to Gentzen-style sequent calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  13. Herbelin, H.: Explicit substitutions and reducibility. Journal of Logic and Computation 11, 429–449 (2001)

    Article  MathSciNet  Google Scholar 

  14. Joachimski, F., Matthes, R.: Short proofs of normalization for the simply typed λ-calculus, permutative conversions and Gödel’s T. Archive for Mathematical Logic 42, 59–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Melliès, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–334. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  16. Ritter, E.: Characterising explicit substitutions which preserve termination. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 325–339. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  17. Tait, W.W.: Intensional interpretations of functionals of finite type I. The Journal of Symbolic Logic 32, 198–212 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  18. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge Tracts in Theoretical Computer Science, vol. 43. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kikuchi, K. (2004). A Direct Proof of Strong Normalization for an Extended Herbelin’s Calculus. In: Kameyama, Y., Stuckey, P.J. (eds) Functional and Logic Programming. FLOPS 2004. Lecture Notes in Computer Science, vol 2998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24754-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24754-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21402-1

  • Online ISBN: 978-3-540-24754-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics