Abstract
Skeletization is used to simplify an object and to give an idea of the global shape of an object. This paper concerns the continuous domain. While many methods already exist, they are mostly applied in 2D-space. We present a new method to skeletize the polygonal approximation of a 3D-object, based on projections and 2D-skeletization from binary trees.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aldous, D.: Triangulating the Circle, at Random. American Mathematical Monthly 101(3), 223–233 (1994)
Amenta, N., Choi, S., Kolluri, R.: The Power Crust. In: SM 2001, pp. 249–260 (2001)
Attali, D.: Squelettes et graphes de Voronoï 2D et 3D. Phd, Grenoble (1995)
Attali, D., Montanvert, A.: Computing and Simplifying 2D and 3D Continuous Skeletons. CVIU 67(3), 261–273 (1997)
Baumgart, B.G.: Winged edge polyhedron representation. Technical Report CSTR-72-320, p. 5 (1972)
Boissonat, J.D., Geiger, B.: Three dimensional reconstruction of complex shapes based on the Delaunay triangulation. Rapport INRIA (1992)
Boissonat, J.D., Yvinec, M.: Géométrie algorithmique. Ediscience Intl. (1995)
Brandt, J.W.: Convergence and continuity criteria for discrete approximations of the continuous planar skeletons. CVGIP 59(1), 116–124 (1994)
Faudot, D., Rigaudière, D.: A new tool to compute 3D skeleton. In: ICCVG 2002, Septemeber 27-29, pp. 258– 268 (2002)
Marion-Poty, V.: Approches parallèles pour la squelettisation 3-D. Thèse, laboratoire d’Informatique du Parallélisme, Lyon I (December 1994)
Ogniewicz, R., Ilg, M.: Voronoï skeletons: Theory and applications. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 63–69 (1992)
O’Rourke, J., Badler, N.: Decomposition of three-dimensional objects into spheres. IEEE PAMI-1(3), 295–305 (1979)
Schmitt, M.: Some examples of algorithms analysis in computational geometry by means of mathematic morphology techniques. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 225–246. Springer, Heidelberg (1989)
Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Computing the medial surface of a solid from a domain Delaunay triangulation. In: ACM Symp. on SMA, May 1995, pp. 201–212 (1995)
Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Shape Description By Medial Surface Construction. IEEE Trans. on Visualization and Computer Graphics 2(1), 62–72 (1996)
Svensson, S.: Reversible surface skeletons of 3D objects by iterative thinning of distance transforms. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 395–406. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ménegaux, D., Faudot, D., Kheddouci, H. (2004). Skeletizing 3D-Objects by Projections. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-540-24767-8_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22057-2
Online ISBN: 978-3-540-24767-8
eBook Packages: Springer Book Archive