Skip to main content

Skeletizing 3D-Objects by Projections

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

  • 1115 Accesses

Abstract

Skeletization is used to simplify an object and to give an idea of the global shape of an object. This paper concerns the continuous domain. While many methods already exist, they are mostly applied in 2D-space. We present a new method to skeletize the polygonal approximation of a 3D-object, based on projections and 2D-skeletization from binary trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aldous, D.: Triangulating the Circle, at Random. American Mathematical Monthly 101(3), 223–233 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amenta, N., Choi, S., Kolluri, R.: The Power Crust. In: SM 2001, pp. 249–260 (2001)

    Google Scholar 

  3. Attali, D.: Squelettes et graphes de Voronoï 2D et 3D. Phd, Grenoble (1995)

    Google Scholar 

  4. Attali, D., Montanvert, A.: Computing and Simplifying 2D and 3D Continuous Skeletons. CVIU 67(3), 261–273 (1997)

    Google Scholar 

  5. Baumgart, B.G.: Winged edge polyhedron representation. Technical Report CSTR-72-320, p. 5 (1972)

    Google Scholar 

  6. Boissonat, J.D., Geiger, B.: Three dimensional reconstruction of complex shapes based on the Delaunay triangulation. Rapport INRIA (1992)

    Google Scholar 

  7. Boissonat, J.D., Yvinec, M.: Géométrie algorithmique. Ediscience Intl. (1995)

    Google Scholar 

  8. Brandt, J.W.: Convergence and continuity criteria for discrete approximations of the continuous planar skeletons. CVGIP 59(1), 116–124 (1994)

    Article  Google Scholar 

  9. Faudot, D., Rigaudière, D.: A new tool to compute 3D skeleton. In: ICCVG 2002, Septemeber 27-29, pp. 258– 268 (2002)

    Google Scholar 

  10. Marion-Poty, V.: Approches parallèles pour la squelettisation 3-D. Thèse, laboratoire d’Informatique du Parallélisme, Lyon I (December 1994)

    Google Scholar 

  11. Ogniewicz, R., Ilg, M.: Voronoï skeletons: Theory and applications. In: IEEE Conf. on Computer Vision and Pattern Recognition, pp. 63–69 (1992)

    Google Scholar 

  12. O’Rourke, J., Badler, N.: Decomposition of three-dimensional objects into spheres. IEEE PAMI-1(3), 295–305 (1979)

    Google Scholar 

  13. Schmitt, M.: Some examples of algorithms analysis in computational geometry by means of mathematic morphology techniques. In: Boissonnat, J.-D., Laumond, J.-P. (eds.) Geometry and Robotics. LNCS, vol. 391, pp. 225–246. Springer, Heidelberg (1989)

    Google Scholar 

  14. Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Computing the medial surface of a solid from a domain Delaunay triangulation. In: ACM Symp. on SMA, May 1995, pp. 201–212 (1995)

    Google Scholar 

  15. Sheehy, D.J., Armstrong, C.G., Robinson, D.J.: Shape Description By Medial Surface Construction. IEEE Trans. on Visualization and Computer Graphics 2(1), 62–72 (1996)

    Article  Google Scholar 

  16. Svensson, S.: Reversible surface skeletons of 3D objects by iterative thinning of distance transforms. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 395–406. Springer, Heidelberg (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ménegaux, D., Faudot, D., Kheddouci, H. (2004). Skeletizing 3D-Objects by Projections. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics