Skip to main content

Confidence Sets for the Aumann Mean of a Random Closed Set

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

  • 1147 Accesses

Abstract

The objective of this paper is to develop a set of reliable methods to build confidence sets for the Aumann mean of a random closed set estimated through the Minkowski empirical mean. In order to do so, we introduce a procedure to build a confidence set based on Weil’s result for the Hausdorff distance between the empirical and the Aumann means; then, we introduce another procedure based on the support function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Araujo, A., Giné, E.: The central limit theorem for real and Banach valued random variables. Wiley, New York (1980)

    MATH  Google Scholar 

  • Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. The Annals of Probability 3, 879–882 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  • Choirat, C., Seri, R.: Confidence sets for the Aumann mean of random closed sets. Working Paper, Université Paris 9 Dauphine (2003)

    Google Scholar 

  • Choirat, C., Hess, C., Seri, R.: A Functional Version of the Birkhoff Ergodic Theorem for a Normal Integrand: A Variational Approach. The Annals of Probability 31, 63–92 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Gardner, R.J.: Geometric tomography, Encyclopedia of mathematics and its applications 58. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  • Goutsias, J.: Morphological analysis of random sets, an introduction. In: Goutsias, J., Mahlher, R.P., Nguyen, H.T. (eds.) Random sets, theory and applications, pp. 2–26. Springer, Heidelberg (1997)

    Google Scholar 

  • Hajivassiliou, V., McFadden, D.L., Ruud, P.: Simulation of multivariate normal rectangle probabilities and their derivatives: Theoretical and computational results. Journal of Econometrics 72, 85–134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Hess, C.: Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics 24, 1298–1315 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  • Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299–314 (1996)

    Article  Google Scholar 

  • Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. IEEE Press, Los Alamitos (1988)

    MATH  Google Scholar 

  • Kendall, G.: Foundations of a theory of random sets. In: Harding, E.F., Kendall, D.G. (eds.) Advances in theory and applications of random sets, pp. 322–376. Wiley, London (1974)

    Google Scholar 

  • Matheron, G.: Random sets and integral geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  • Molchanov, I.S.: Statistical models for random sets. In: Goutsias, J., Mahlher, R.P., Nguyen, H.T. (eds.) Random sets, theory and applications, pp. 27–45. Springer, Heidelberg (1997)

    Google Scholar 

  • Natterer, F.: The mathematics of computerized tomography. Wiley, Stuttgart (1986)

    MATH  Google Scholar 

  • Reyment, R.A.: Multivariate Morphometrics. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 721–745. North-Holland Publishing Company, Amsterdam (1982)

    Google Scholar 

  • Stoyan, D., Stoyan, H.: Fractals, random shapes and point fields. Wiley, Chichester (1994)

    MATH  Google Scholar 

  • Weil, W.: An application of the central limit theorem for Banach-space-valued random variables to the theory of random sets. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 60, 203–208 (1982)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seri, R., Choirat, C. (2004). Confidence Sets for the Aumann Mean of a Random Closed Set. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics