Abstract
The objective of this paper is to develop a set of reliable methods to build confidence sets for the Aumann mean of a random closed set estimated through the Minkowski empirical mean. In order to do so, we introduce a procedure to build a confidence set based on Weil’s result for the Hausdorff distance between the empirical and the Aumann means; then, we introduce another procedure based on the support function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Araujo, A., Giné, E.: The central limit theorem for real and Banach valued random variables. Wiley, New York (1980)
Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. The Annals of Probability 3, 879–882 (1975)
Choirat, C., Seri, R.: Confidence sets for the Aumann mean of random closed sets. Working Paper, Université Paris 9 Dauphine (2003)
Choirat, C., Hess, C., Seri, R.: A Functional Version of the Birkhoff Ergodic Theorem for a Normal Integrand: A Variational Approach. The Annals of Probability 31, 63–92 (2003)
Gardner, R.J.: Geometric tomography, Encyclopedia of mathematics and its applications 58. Cambridge University Press, Cambridge (1995)
Goutsias, J.: Morphological analysis of random sets, an introduction. In: Goutsias, J., Mahlher, R.P., Nguyen, H.T. (eds.) Random sets, theory and applications, pp. 2–26. Springer, Heidelberg (1997)
Hajivassiliou, V., McFadden, D.L., Ruud, P.: Simulation of multivariate normal rectangle probabilities and their derivatives: Theoretical and computational results. Journal of Econometrics 72, 85–134 (1996)
Hess, C.: Epi-convergence of sequences of normal integrands and strong consistency of the maximum likelihood estimator. The Annals of Statistics 24, 1298–1315 (1996)
Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299–314 (1996)
Kak, A.C., Slaney, M.: Principles of computerized tomographic imaging. IEEE Press, Los Alamitos (1988)
Kendall, G.: Foundations of a theory of random sets. In: Harding, E.F., Kendall, D.G. (eds.) Advances in theory and applications of random sets, pp. 322–376. Wiley, London (1974)
Matheron, G.: Random sets and integral geometry. Wiley, New York (1975)
Molchanov, I.S.: Statistical models for random sets. In: Goutsias, J., Mahlher, R.P., Nguyen, H.T. (eds.) Random sets, theory and applications, pp. 27–45. Springer, Heidelberg (1997)
Natterer, F.: The mathematics of computerized tomography. Wiley, Stuttgart (1986)
Reyment, R.A.: Multivariate Morphometrics. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 721–745. North-Holland Publishing Company, Amsterdam (1982)
Stoyan, D., Stoyan, H.: Fractals, random shapes and point fields. Wiley, Chichester (1994)
Weil, W.: An application of the central limit theorem for Banach-space-valued random variables to the theory of random sets. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 60, 203–208 (1982)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Seri, R., Choirat, C. (2004). Confidence Sets for the Aumann Mean of a Random Closed Set. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_31
Download citation
DOI: https://doi.org/10.1007/978-3-540-24767-8_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22057-2
Online ISBN: 978-3-540-24767-8
eBook Packages: Springer Book Archive