Skip to main content

A Problem-Specific Convergence Bound for Simulated Annealing-Based Local Search

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

Abstract

We investigate the convergence of simulated annealing with emphasis on the probability 1-δ to be in an optimum solution. The analysis is carried out for a logarithmic cooling schedule c(k) = Γ/ln(k + 2), i.e., the temperature is lowered at any step k. We prove that after k > (n/δ)O(Γ) steps the probability to be in an optimum solution is larger than 1-δ, where n is an upper bound for the size of local neighbourhoods. The parameter Γ is problem specific and depends on the underlying energy landscape. By counting the occurrences of configurations, we demonstrate for an application with known optimum solutions that the lower bound indeed ensures the stated probability for a relatively small constant in O(Γ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, E.H.L., Korst, J.H.M.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach. Wiley & Sons, New York (1989)

    MATH  Google Scholar 

  2. Azencott, S. (ed.): Simulated Annealing: Parallelization Techniques. Wiley & Sons, New York (1992)

    MATH  Google Scholar 

  3. Catoni, O.: Rough Large Deviation Estimates for Simulated Annealing: Applications to Exponential Schedules. Annals of Probability 20(3), 1109–1146 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Catoni, O.: Metropolis, Simulated Annealing, and Iterated Energy Transformation Algorithms: Theory and Experiments. J. of Complexity 12(4), 595–623 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Černy, V.: A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm. Preprint, Inst. of Physics and Biophysics, Comenius Univ., Bratislava (1982) (see also: J. Optim. Theory Appl. 45, 41–51 (1985))

    Google Scholar 

  6. Hajek, B.: Cooling Schedules for Optimal Annealing. Mathem. Oper. Res. 13, 311–329 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kearns, M., Li, M., Pitt, L., Valiant, L.G.: Recent Results on Boolean Concept Learning. In: Proc. 4th Int. Workshop on Machine Learning, pp. 337–352 (1987)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of State Calculations by Fast Computing Machines. J. of Chemical Physics 21(6), 1087–1092 (1953)

    Article  Google Scholar 

  10. Rajasekaran, S., Reif, J.H.: Nested Annealing: A Provable Improvement to Simulated Annealing. J. of Theoretical Computer Science 99(1), 157–176 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Romeo, F., Sangiovanni-Vincentelli, A.: A Theoretical Framework for Simulated Annealing. Algorithmica 6(3), 302–345 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Seneta, E.: Non-negative Matrices and Markov Chains. Springer, New York (1981)

    MATH  Google Scholar 

  13. Sinclair, A., Jerrum, M.: Approximate Counting, Uniform Generation, and Rapidly Mixing Markov Chains. Information and Computation 82, 93–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Sinclair, A., Jerrum, M.: Polynomial-Time Approximation Algorithms for the Ising Model. SIAM J. Comput. 22(5), 1087–1116 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sorkin, G.: Efficient Simulated Annealing on Fractal Energy Landscapes. Algorithmica 6, 367–418 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albrecht, A.A. (2004). A Problem-Specific Convergence Bound for Simulated Annealing-Based Local Search. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics