Skip to main content

Asymptotic Error Estimate of Iterative Newton-Type Methods and Its Practical Application

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

  • 1141 Accesses

Abstract

In the paper we present a new result for evaluating the convergence error of iterative Newton-type methods with respect to the number of iteration steps. We prove an explicit asymptotically correct estimate that provide a fruitful basis to treat many practical situations. As an example of such application, we solve three important problems arising in numerical integration of ordinary differential equations and semi-explicit index 1 differential-algebraic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aul’chenko, S.M., Latypov, A.F., Nikulichev, Y.V.: A method for the numerical integration of systems of ordinary differential equations using Hermite interpolation polynomials. Zh. Vychisl. Mat. Mat. Fiz. 38(10), 1665–1670 (1998) (in Russian); translation in Comput. Math. Math. Phys. 38(10), 1595–1601 (1998)

    MathSciNet  Google Scholar 

  2. Arushanyan, O.B., Zaletkin, S.F.: Numerical solution of ordinary differential equations using FORTRAN. Mosk. Gos. Univ., Moscow (1990) (in Russian)

    Google Scholar 

  3. Bahvalov, N.S., Zhidkov, N.P., Kobelkov, G.M.: Numerical methods. Nauka, Moscow (1987) (in Russian)

    Google Scholar 

  4. Butcher, J.C.: Numerical methods for ordinary differential equations. John Wiley and Son, Chichester (2003)

    Book  MATH  Google Scholar 

  5. Cash, J.R.: On the integration of stiff systems of O.D.E.s using extended backward differentiation formulae. Numer. Math. 34, 235–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cash, J.R.: The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae. Comp. & Math. with Appls. 9, 645–657 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hairer, E., Nørsett, S.P., Wanner, G.: Solving ordinary differential equations I: Nonstiff problems. Springer, Berlin (1987)

    MATH  Google Scholar 

  8. Hairer, E., Wanner, G.: Solving ordinary differential equations II: Stiff and differential-algebraic problems. Springer, Berlin (1996)

    MATH  Google Scholar 

  9. Kulikov, G.Y.: Asymptotic error estimates for the method of simple iterations and for the modified and generalized Newton methods. Mat. Zametki. 63(4), 562–571 (1998) (in Russian); translation in Math. Notes. 63(3-4), 494–502 (1998)

    MathSciNet  Google Scholar 

  10. Kulikov, G.Y.: Numerical methods solving the semi-explicit differential-algebraic equations by implicit multistep fixed stepsize methods. Korean J. Comput. Appl. Math. 4(2), 281–318 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Kulikov, G.Y.: Numerical solution of the Cauchy problem for a system of differential-algebraic equations with the use of implicit Runge-Kutta methods with nontrivial predictor. Zh. Vychisl. Mat. Mat. Fiz. 38(1), 68–84 (1998) (in Russian); translation in Comput. Math. Math. Phys. 38(1), 64–80 (1998)

    MathSciNet  Google Scholar 

  12. Kulikov, G.Y.: On using Newton-type iterative methods for solving systems of differential-algebraic equations of index 1. Zh. Vychisl. Mat. Mat. Fiz. 41(8), 1180–1189 (2001) (in Russian); translation in Comput. Math. Math. Phys. 41(8), 1122–1131 (2001)

    MathSciNet  Google Scholar 

  13. Kulikov, G.Y.: On implicit extrapolation methods for ordinary differential equations. Russian J. Numer. Anal. Math. Modelling. 17(1), 41–69 (2002)

    MathSciNet  Google Scholar 

  14. Kulikov, G.Y.: On implicit extrapolation methods for systems of differentialalgebraic equations. Vestnik Moskov. Univ. Ser. 1 Mat. Mekh. (5), 3–7 (2002) (in Russian)

    MathSciNet  Google Scholar 

  15. Kulikov, G.Y.: Numerical methods with global error control for solving differential and differential-algebraic equations of index 1. DCs thesis. Ulyanovsk State University, Ulyanovsk (2002) (in Russian)

    Google Scholar 

  16. Kulikov, G.Y.: One-step methods and implicit extrapolation technique for index 1 differential-algebraic systems. Russian J. Numer. Anal. Math. Modelling (to appear)

    Google Scholar 

  17. Kulikov, G.Y., Merkulov, A.I.: On one-step collocation methods with high derivatives for solving ordinary differential equations. Zh. Vychisl. Mat. Mat. Fiz. (in Russian) (to appear); translation in Comput. Math. Math. Phys. (to appear)

    Google Scholar 

  18. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, London (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kulikov, G.Y., Merkulov, A.I. (2004). Asymptotic Error Estimate of Iterative Newton-Type Methods and Its Practical Application. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics