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Abstract

The Fast Fourier Transform (FFT) has been used in many scientific and engineering ap-

plications. The use of FFT for financial derivatives has been gaining momentum in the

recent past. In this thesis, i) we have improved a recently proposed model of FFT for

pricing financial derivatives to help design an efficient parallel algorithm. The improved

mathematical model put forth in our research bridges a gap between quantitative ap-

proaches for the option pricing problem and practical implementation of such approaches

on modern computer architectures. The thesis goes further by proving that the improved

model of fast Fourier transform for option pricing produces accurate option values. ii)

We have developed a parallel algorithm for the FFT using the classical Cooley-Tukey

algorithm and improved this algorithm by introducing a data swapping technique that

brings data closer to the respective processors and hence reduces the communication

overhead to a large extent leading to better performance of the parallel algorithm.

We have tested the new algorithm on a ��� node SunFire ������� high performance

computing system and compared the new algorithm with the traditional Cooley-Tukey
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algorithm. Option values are calculated for various strike prices with a proper selection

of strike-price spacing to ensure fine-grid integration for FFT computation as well as to

maximize the number of strikes lying in the desired region of the stock price. Compared

to the traditional Cooley-Tukey algorithm, the current algorithm with data swapping per-

forms better by more than ����� for large data sizes. In the rapidly changing market place,

these improvements could mean a lot for an investor or financial institution because ob-

taining faster results offers a competitive advantages.

Keywords: Financial Derivatives; Option Pricing; Fast Fourier Transform; Mathemati-

cal Modeling; Parallel Algorithm; Data Locality.
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Chapter 1

Introduction

Some of the problems facing the finance industry have been recognized as grand chal-

lenge problems [Amm89, HL01, KNR00, Zen99] in addition to problems from science

and engineering [Tuc97]. The finance industry demands efficient algorithms and high-

speed for solving problems such as option pricing, risk analysis, and portfolio manage-

ment. We address the problem of option pricing using advanced scientific computing

techniques in this thesis.

The mathematical models of finance represented either in continuous or discrete form

are generally nonlinear, multidimensional and require advanced knowledge in areas such

as measure theory and stochastic partial differential equations. Further, they are very

challenging in terms of finding closed form analytical solutions. Computational solutions

are inevitable for such problems in finance as option pricing and portfolio optimization.

However, numerical computing for finance problems applying advanced computer archi-

tectures has gained prominence only in the recent past.

One of the main characteristics of financial markets is that changes can occur very

rapidly as Black Monday (October ��� , ������� ) [Hul02] has shown. In a very short time,

1
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asset prices may change significantly. To respond adequately to such changes, it is neces-

sary for large market participants, like brokers and banks, to evaluate information as fast

as possible. This is important to make, for instance, the appropriate portfolio changes.

Any delay in information access could mean a financial loss. According to the methodol-

ogy developed by Black and Scholes [BS73], it is possible to approximate the implication

of market changes on portfolio positions. Their method, however, requires the solution

of a set of partial differential equations by means of numerical integration. Depending on

the number of assets taken into account, obtaining such a solution can be highly computa-

tionally intensive. For this problem, supercomputers can facilitate real time information

processing and near instantaneous response.

Traditionally the option pricing problem has been studied predominantly using the

Black-Scholes model [BS73], using CRR model [CRR79] or using Monte-Carlo simu-

lation [Boy77]. The Black-Scholes model uses a continuous approach in representing

the option pricing problem as a partial differential equation while the other two mod-

els formulate the option problem using more intuitive and discrete approaches. Since

the finance community is devoid of the computational knowledge for a long time, the

researchers tried to solve the problem for closed form solution that led to many assump-

tions on the model, which diluted the problem under study. A recent entry into the

finance community is the use of numerical techniques such as finite-differencing [TR00]

for solving the Black-Scholes and other continuous models. A much more recent entry

is the use of transform techniques such as Laplace transform [DHC � 04] and fast Fourier

transform [CM99]. This thesis addresses the option pricing problem and its computa-

tional issues. We have employed a modern scientific computing approach, using Fast

Fourier Transform (FFT), to solve this problem.
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1.1 Definition

There are several areas of research in finance, both in industry and academia. Some of

the important ones are option pricing, risk analysis, portfolio management, data mining,

interest rate modeling, and volatility. These problems may occur among the different

financial markets including stock, equities or bond markets; currency or foreign exchange

markets; commodity markets such as oil, gold, copper, and electricity; as well as options

markets such as complex derivative products, etc.

Only the relevant terms involved in above markets and research areas pertaining to

option pricing are described in this section. For many other definitions, readers are di-

rected to [Hul02]. The terms financial derivatives, derivative securities, derivative prod-

ucts, contingent claims or just derivatives are interchangeably used in the literature.

There are two parties in a contract: the holder and the writer. A call option holder

has the right to purchase a security/asset at a set price, if he/she chooses, within a certain

period of time. The option writer has the obligation to fulfill that option. There are two

types of options considered:

Call Option: An agreement that gives an holder the right (but not the obligation) to

purchase a prescribed asset, known as the underlying asset at a specified price known

as the exercise price (or strike price) within a specific future date (or expiration date)

[Hul02].

Put Option: An option contract that gives an holder the right (but not the obligation)

to sell a prescribed asset, known as the underlying asset at a specified price known as the

exercise price (or strike price) within a specific future date (or expiration date) [Hul02].

The issues that are important between the holder and the writer are:

� The cost for the holder’s right;
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� Minimizing the risk associated with the writer’s obligation.

To gain an intuitive feel, let us consider the following example. Consider a stock price

is
�
��� on November ��� , ������� . With a call option, an investor enter a deal to buy that stock

at
�
� � on May ��� , ������� . On May ��� , ������� suppose the stock price is

�
��� . On this day,

he/she can exercise his/her option of buying the stock at
�
� � and then by immediately

selling in the open market at
�
��� , he/she can gain

�
� . However, on May ��� , ������� , if

the stock price is
� ��� , he/she is not obligated to buy the stock1(why buy something at

a higher price when the same is available at a lower cost in the open market?). The

question then is why would anyone write an option? The answer is that the writer wants

to make a profit by taking a “view or speculation” on the market.

Call and Put options, as discussed above, form a small section of derivative products.

Options, as described earlier, which can only be exercised at maturity are called Euro-

pean options [Hul02]. An American option is an option that may be exercised at any

time prior to expiry [Hul02]. American options are analogous to the free boundary prob-

lems [TR00] in engineering, a mathematically challenging problem since there is no set

boundary to refer to or iterate on. The issue here is determining the best time to exercise

the option. Exotic options have values, which depend on the history of an asset price.

They are analogous to the crack propagation problems [TKA � 00, Thu03a] in engineer-

ing, where damage at one particular point on a material is a function of the distance from

the crack source and its propagation along the material surface and interior.
1Note: The call value is, therefore, a function of the strike price.
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1.2 Organization

The thesis is organized as follows. First, we have introduced in this chapter some basic

terminology of the option pricing problem for the sake of completeness and clarity. At

the same time we will use limited finance “jargon” in the thesis as a whole. The related

work is described in chapter 2 including some background on option pricing using four

different techniques (binomial lattice, Monte Carlo, finite difference, and fast Fourier

transform). In chapter 3, we discuss the option pricing problem formulation using FFT

based on the CM (Carr and Madan) model. We state the methodologies for the current

research in chapter 4 with a detailed description of the improvement to the mathematical

modeling of FFT for option pricing which is one of the major contributions of this thesis.

Then in chapter 5, section 5.1 shows how the basic FFT equation can be parallelized.

Design and development of a new parallel algorithm for calculating the call value using

FFT, another major contribution of this thesis, is described in section 5.2. In chapter

6, we show the analytical and performance results of our new parallel FFT algorithm.

Finally, we present conclusions in chapter 7 and future work in chapter 8.



Chapter 2

Background and Related Work

The use of FFT technique in option pricing is relatively new [Cer04] and the related

literature is rather thin. However, there are many other numerical techniques avail-

able for solving the option pricing problem, such as: binomial lattice [CRR79], Monte-

Carlo [Boy77], and finite-differencing techniques [TR00], as described below. Though a

direct comparison of our results using the FFT computation with any of these techniques

is not feasible, a general introduction to these techniques is warranted. While the finite-

differencing technique is gaining momentum among finance engineers, the binomial lat-

tice and Monte-Carlo method have been used predominantly. A thorough coverage of

all these methods is beyond the scope of this current research and hence only very se-

lected works that have relevance to parallel computing are discussed in this section. We

describe each of these methods in the following sections.

In general, two types of numerical techniques are used for option valuation (i) tech-

niques which directly approximate the underlying stochastic process (these techniques

are more intuitive) and (ii) techniques which approximate the resulting partial differen-

tial equations. The first approach includes Monte Carlo simulation [Boy77] and different

6
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Figure 2.1: One-Step Binomial Model

lattice approaches used by Cox, Ross, and Rubinstein [CRR79]. The second approach

includes numerical integration and finite difference schemes (both implicit and explicit)

[TR00]. In this chapter, we will describe the binomial lattice approach in section 2.1,

Monte Carlo simulation in section 2.2, the finite differencing technique in section 2.3.

Option valuation using FFT as proposed by different authors and spread options based

on CM [CM99] approach (chapter 3) are described in section 2.4. Details of work apply-

ing the FFT to option pricing are described in chapter 3.

2.1 Option Pricing Using the Binomial Lattice Approach

The binomial lattice approach was first popularized by Cox, Ross, and Rubinstein (C-R-

R) in 1979 [CRR79]. The stock price movement of an underlying asset can be described

by a strict multiplicative binomial process over successive periods as follows: A stock

price � at the beginning of a period, can increase (by a multiplicative factor) to ���
with probability � (shown in figure 2.1). It may decrease to ��� with complementary

probability � ���	��
 at the end of the period. Here � and � denoted the rate of return when

the stock goes up or down respectively, hence �
� ����� . When the asset price moves up
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from ��� ��� , the pay-off from the derivative is
���

where
�

is the derivative price. When

the price goes down from ��� ��� , the pay-off from the derivative is
���

.

A binomial lattice can be used to capture the asset price movement directly. To cap-

ture the price movements closely, large numbers of intermediate periods between the start

and maturity of the contract are needed. However, due to its simplicity and intuitiveness,

this method has become a text book method for understanding the pricing process. This

is an intuitive technique and, hence, is very useful in understanding the problem and pric-

ing process generally. The advent of faster computers has given this method new life in

the industry generating approximate solutions to the given problem which are then used

as initial conditions in other more complicated numerical techniques. There is inherent

concurrency in this method that can be exploited for parallel implementation. Many al-

gorithms have been developed using this technique for the option pricing problem (for

example [CJEV98, TDG00, TLN � 01, TB04]). The advantage of this technique is the

intuitiveness of the method whereas a major disadvantage is in the inaccuracy of the

results.

The original one-step binomial model for option pricing developed in [CRR79] sets

up a portfolio of stocks and options in such a way that there is no uncertainty about the

value of the portfolio at the end of the contract period. For this, it is assumed that the

option is risk-free. As the portfolio has no risk, the return earned will be equal to the

risk-free interest rate. This assumption is taken as the initial step to calculate the option

value with the cost of setting up the portfolio.

We first construct a portfolio with a long position (the state of actually owing a secu-

rity, contract, or commodity) in � shares of stocks and a short position (in future contract,

the promise to sell a fixed amount of goods at a fixed price in the future) in one call op-

tion then we calculate the value of � which makes the portfolio risk-less. First a closed

form formula for � will be defined using the general terms. If the stock price increases
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from � � � � , the value of the portfolio at the end of the period of the derivative will be

��� � � � � and if the stock price decreases the value of the portfolio will be � � � � ��� .
For a portfolio which is to be risk-neutral:

� � � � � � � ��� � � ���

� � � � ��
 � � � � � ���

� �
� � � � �
� � � � ��
 � (2.1)

Equation (2.1) is the ratio of the change in the derivative price to the change in the stock

price at time T. Let � be the risk-free interest rate. By discounting the end-of-the-period

value of the portfolio � � � � � ��� 
 and using the growth rate formula [WHD95], we can

find the present value of the portfolio to be � � � � � � � 
���� �	��
 . Since the cost of setting

up the portfolio is � � � � , for a risk-less portfolio

� � � � � � � � � � � � 
�� � �	��
 � (2.2)

Substituting equation (2.1) in equation (2.2) and manipulating we can get

� ��� �
�
��
 ��� � ��� � � ��� 
 � � 
�� (2.3)

where

� � �
�
��
 � �
� � � � (2.4)

Equation (2.3) and equation (2.4) calculate the one-step binomial model in pricing deriva-

tive. The value of � calculated in equation (2.4) can be treated as the probability of an up

movement in the stock price. The function ��� � ��� � � ��� 
 ��� 
 in equation (2.3) calculates

the expected pay-off from the derivatives.

2.1.1 Two-Step Binomial Tree

The two-step binomial model (when the contract period is split into two steps) follows

the same process as the one-step binomial model. For simplicity we will assume that
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Figure 2.2: General Two-Step Binomial Model

the increase and decrease of stock price will be the same. Figure 2.2 shows a general

two-step binomial model.

At each step of the lattice, the price goes up by a factor of � from the initial value or

goes down by a factor of � from the initial value. Using equation (2.3) repeatedly, the

following equations can be derived:

� � � � �
�	��
 � � � � � � � � � � 
 � � � 
 � (2.5)

��� � � �
�	��
 � � � � ��� � � � � 
 ��� � 
 � (2.6)

� � � �
�	��
 � � � ��� � � � � 
 ��� 
 � (2.7)
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Substitution of equation (2.5) and equation (2.6) in equation (2.7) gives:

� � � �
� �
��
 � � � � � � �

� � � � � � 
 � � � � � � � � 
 � ��� � 
 � (2.8)

2.1.2 A Numerical Example

Figure 2.3 shows an example of the two-step binomial method. Node A is the current

start time. Nodes B and C are the intermediate points in the contract period of � months.
�

, � , and � are the possible terminal points that the stock will reach after � months

from � or � . The periods are assumed to be equal for simplicity and the up and down

movement are also assumed to be at a constant rate (of � � � ) where � � � � � and � � � � � .

In general, the increase and decrease of the stock price, however, does not need to be

equal as is assumed in this numerical example. At
�

, � , and � (the leaf nodes) the

A


22


18
1.2825


D


F

0


2.026


0


t=0

0


E
20


19.8


16.2


C


B


24.2


3.2


t=T

Strike Price = $21


3 months


3 months


Figure 2.3: Numerical Example of a 2-Step Binomial Model
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option prices calculated are the pay-off from the derivative. They can be calculated

from the strike price and speculated stock price. Therefore, at
�

, the � � ��� ��� � �
���
� �

� � � �
	 � �
���
� � � � � ��	 � � � ��� � � ��� � � � � � � �

� � � . This is known as local pay-off, that

is, the pay-off from the option as soon as the node is reached. At nodes � and � since

the � � � �
	 � �
���
�
� � � � ��	 � � � ��� � , the option value at these nodes is

�
� . Also at � , the

option price is � . At � , the local pay-off can be calculated to be
� � ( � � � ��	 � �

���
� �

� � � ��	 � � � ��� � � ��� � � �
� � � ). Assuming a � � � increase and decrease (i.e., � � � � �
and � � � � � ), at � , � can be calculated using equation (2.4) to be � � � ����� . Therefore, the

option value at � can be calculated using equation (2.3) as � � � ��� . If it is an American

option, it is not desirable to exercise the option at node � reached as the option value

calculated is
� � . Waiting for the second pass is a better decision after the option values

at nodes
�

and � have been calculated. Again it is obvious that nodes � ,
�

, and �

are nothing but the one-step binomial model so all the corresponding formulas can be

applied here.

After calculating the stock price and the option value at the nodes � and � , option

value at node � is calculated as � � ��� � � using the one-step binomial formula given by

equation (2.3). In this model the up and down movement is assumed to be equal for the

sake of simplicity. This assumption led to a constant � at each node. This assumption

can be relaxed in a more realistic analysis of portfolio.

2.2 Option Pricing Using the Monte Carlo Technique

Another traditional method is the Monte-Carlo simulation [Boy77]. A random walk sim-

ulates the price movement of the underlying asset of an option. Thousands of such simu-

lations capture all possible asset price movements. The drawback of this technique is the

requirement of thousands of simulations before a reasonable error bound is achieved in
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the option values [Var96]. Since the simulations are independent of each other, and there

is no communication between them, we have large potential for parallelism in this tech-

nique. This is known as “embarrassingly parallel” problem [RST04]. The Monte-Carlo

simulation does not pose serious challenges from the parallel computing perspective and

is used as a benchmark technique in finance industries with a network of workstations.

As mentioned before, more simulations would yield better results and hence with the

availability of large computing power, accuracy of the solution can be improved. There

are improvements reported in the literature on this technique [FLM � 01, RST04, Sri02]

both from the algorithmic and parallel computing perspectives. The technique is com-

mon among finance practitioners due to its intuitive nature.

The Monte Carlo approach is an established numerical method for solving derivatives

involving highly random parameters. With more sampling, more accurate results are

obtained and the number of samples is dependent on the availability of computational

resources.

The basic theme in the theory of derivative pricing is the random walk of asset

prices [Boy77]. One such theory is given by the Black-Scholes formula [BS73] which

gives the relationship between option prices and expectations. The Monte Carlo tech-

nique exploits this relationship to find option prices from simulations of the asset prices.

In brief, the value of an option is the expected present value of the pay-off at the expiry

under a risk-neutral random walk of the underlying asset. The risk neutral random walk

for asset price � is:

��� ��� � � � ��� � ��� � (2.9)

where � is the average rate of growth in the asset price called the drift (deterministic part

in the price change),
�

is the volatility (stochastic part in the price change), a measure

of the standard deviation of the returns and
�

is the time. If there is no randomness

involved; ��� � � ��� � . The term ��� which is certainly a feature of asset price is known
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as the Weiner process [WHD95] and has the following properties:

� ��� is a random variable from a normal distribution

� the mean of ��� � �

� the variance of ��� � � �

The option value can be calculated from the following equation:

� � ��� ������� � � � � � �
�����

�


	 ��� �
��� � � � � � 
�� � (2.10)

where the expectation is with respect to the risk-neutral random walk. Equation (2.10)

leads to an estimate of the option through the following approach:

Simulate the risk-neutral random walk over the contract period, starting at today’s

value of the asset. This gives one realization of the underlying asset’s price path. For

this realization, the option pay-off is calculated as ����� � � � � � ��
 , where � is the strike

price. This calculation is done many times over the period and then the average pay-off

over all this realization is calculated. Then the present value of this average is considered

as the option value.

The first step of this algorithm requires the generation of random numbers from a

standard normal distribution. The asset price at each time step over the period is updated

from these generated random increments using this formula

� � � � � � � ��� ����� � � � (2.11)

where
� �

is the increment in the time step and � is the standard normal distribution.

The latest calculated value of � is then put in the right hand side of equation (2.11)

to calculate
� � and hence the next value of � . One can find a simple and exact time
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stepping algorithm where the risk neutral stochastic differential equations for � will be

of the form [Thu03b]:

� ������� � 
 � � � � �
�
� � 
 � � ��� ��� � (2.12)

Integration of this will give:

� � � 
�� � � � 
 ��� � 	 � � � �
�
� � 
 � ����
 
� ����
 � (2.13)

Over a time step
� �

� � � � � � 
 � � � � 
 � � �
� � � � 
 ��� � 	 � � � �

�
� � 
 � � ��� � � � ��
 � (2.14)

Since this expression is exact and simple, it is the best time-stepping algorithm to use.

Besides, if the pay-off only depends on the final asset value (i.e. European and path

independent option), the final asset price can be simulated in one giant leap with a time-

step of � .

The Monte Carlo approach for option pricing is better than other approaches because

of its simple mathematics. Additionally, more simulations may be simply used to give

better accuracy in the computed result.

2.3 Option Pricing Using the Finite Difference Technique

Finite difference is one of the easier techniques among the CFD techniques used for

pricing option. In this method, the value of a derivative is calculated by solving the

differential equations manifesting the derivatives under study. The differential equations

are transformed into several difference equations and the set of difference equations is

solved iteratively. The price of an option
� � � � � 
 can be obtained by solving the familiar
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partial differential equation, known as the Black-Scholes equation [BS73].
� � � � 
 � � 


� � 

�

� � � � 
 � � 

� � � �

�

� � � � � 
 � � 

� � �

 � �



� � � � � � � 
 � � 
 � (2.15)

Solving the simple Black-Scholes model for option pricing numerically has been a

daunting task since the subject of numerical analysis is foreign to most of the finance

academics. This model manifests the option pricing problem as a stochastic partial dif-

ferential equation and solving this equation analytically is a formidable task. Computa-

tional Fluid Dynamics (CFD) techniques such as finite difference and finite element tech-

niques [Cla98, CTIT04, TR00, TZG04, ZFV98, Zhe02] have been employed to solve the

Black-Scholes model numerically. These techniques partition the solution space in fine

rectangular/triangular meshes to represent time and asset prices of the underlying asset in

the option. Marching the computation over large numbers of time steps yields the option

values. Accuracy depends on the mesh size and the number of time steps. For a very

accurate solution, to the � � th decimal place, millions of time steps are not uncommon.

This technique is challenging both in terms of conceptualization and parallel algorithm

development. The computational mesh has to be partitioned and assigned to various pro-

cessors in a parallel system which raises both computational and communication issues.

For standard European options, a closed form solution of the Black-Scholes equation

can be found but in most cases, no closed form solution can be found. For European

call options, the boundary condition of equation (2.15) is
� � � � � � 
 � ����� � � � � � � � 


where � is the exercise price. Though the binomial lattice method can be used, the finite

difference method is more efficient. Moreover, the binomial lattice method is a special

case of the finite difference technique mathematically.

In this section, we briefly describe the ����� transform method proposed by Brennan

and Schwartz [BS77] to derive a simple European option pricing formula. Let � � ��� �
and � � � � � 
 � � � � � � 
 as the price of the call option at time

�
. Here, the price is defined in
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terms of the � � � of the asset price and time
�
. Eliminating � and

�
notations, we can get:

� �
� � �

�
�

� � � ���
� � �
� � � �

� � �
�

� � � �
�
�

� ��� � � � �
� �
� � �

�
�

� � �

Substitution of all the above equations in equation (2.15) gives

�
�
� � � �

�
� � � �

�
� � �

�
� � � �

�
� �

�
�
�

� � � � � � � � (2.16)

The above equation can be expressed as:

�
�
� � � �

�

� � � �
�
� � �

�
� � � � �

� �
� � �

� � � � � � � � (2.17)

Here the range of the � ��� of the asset prices can be portioned into finite numbers of

intervals where the minimum asset price is zero and the maximum is infinity. The value

of the asset price will be � � � ��� � � ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� where

the � � is desired to be as small as possible and the maximum asset price will be finite.

As � � � is undefined, the minimum value of � � � is kept close to zero ( � ). Letting � �
� � �

, the total span of the option’s life is portioned into discrete intervals equaling� �	� � � �
�	� � � � �

� � � � � � � �
� � �

� � . These gradations of time and asset price can be shown

on a grid. Each dot in the grid represents an option price of the corresponding ����� of the

asset price in the given row and the corresponding expiry time in the given column.

For zero asset price, the call is worthless regardless of the expiry date and hence, one

boundary condition in space is:

� � � � � 
 � � for all
� � (2.18)

For column ��� � , ��� � ��
 where 
 is infinitesimally small, in which case:

� ��
 � � 
�� � for all
� � (2.19)
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Time to expiration

��� � � � � � � � � � � � � � � � � � �� � � � � � � �

� � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � �

� � � � � � � � � �

� � � � � � � � �� � � � � � � �

Figure 2.4: Time and Asset Price Grid

which allows us to fill the bottom rows of the grid shown in figure 2.4 with zeros

[Cha97]. When � � � , the first derivative of the call price (that is equal to asset

price) with respect to the asset price is � :

��� ������
� � � � � � 


� � � � for all
� � (2.20)

Since
� � � � � � 
 � � � � � � � � � � 
 � ��� , it follows that:

�
� � ��� � 


� � �
� � � � � � 


� � � � � � � � � for all
�

when ��� ��� � � (2.21)

This means that if the second highest call value is known, the highest value can be deter-

mined by adding � � � � to it.
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The intrinsic value (the value of an option if it would expire with the underlying asset

at its current price) at the expiry date is given as

� � � � ��
�� � � � � � � � � � 
 for all � � (2.22)

with respect to column � , this will be:

� � ��� � 
 � ����� � � � � � � � 
 for all � � (2.23)

So we can fill the right column and some portion of the grid will look like figure 2.5.

Each expression under the dot denotes the price of a particular option with the � � � of the

� � �

� � � � � � � � � ��� � 
 
 � � � � � � � � � 
 
 � � � � � � ��� � � � � 
 

� � �

� � � � � � � � � 
 
 � � � � � � 
 
 � � � ��� � � � � 
 

� � �

� � � � � � ��� � � � � 
 
 � � � � � � ��� � 
 
 � � � � � � ��� � � � � 
 


Figure 2.5: A Stencil of the Grid

asset at the level indicated and the time to expiration as shown in the grid.

The computation can proceed either explicitly or implicitly. Implicit method could

lead to higher accuracy of the option values, but at a higher computational cost. These

two approaches are explained in the following two sections. As can be seen from figure

2.4, the computational domain could be easily partitioned among several processors for

concurrent computations, and hence the option valuations could be sped up.
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The Explicit Finite Difference Method

Like with the binomial lattice technique, we adopt the backward marching idea to the

current date from the future (expiration date). That is, this technique calculates � � � � � 

with respect to the values of � � � � � � � � � � � 
 � � � � � � � � � 
 . Shown in figure 2.6, are the

option prices one time step forward and one asset price up from the current asset price

and one asset price down. The three prices one time step ahead in figure 2.6 are known

due to backward stepping in time.

�

� � � � � � � � � � � � 
 

� �

� � � � � � 
 
 � � � � � � � � � 
 

�

� � � � � � � � � � � � 
 


Figure 2.6: Stencil for Explicit Finite Difference Formulation

The Implicit Finite Difference Method

The implicit finite difference technique computes option prices from the grid in a dif-

ferent way. In figure 2.7, � � � � � 
 is calculated from the option prices � � � � � � � � 
�� � � � �
� � � � 
 in the same column. The calculation of option prices is obtained by solving the

option prices in the same column simultaneously which could lead to higher accuracy,

but it requires solving simultaneous equations and hence has higher computational cost.
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�

� � � � � � ��� � 
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�
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Figure 2.7: Stencil for Implicit Finite Difference Formulation

2.4 Fourier Analysis and Option Pricing

Some authors have reported on the use of Fourier analysis to calculate option prices

[Bat97, CS92, GC97, Hes93, Sco97]. They worked to obtain analytical solution of pric-

ing option for single or multiple assets using the FFT. Option value calculation in these

approaches assumes the option to be risk-neutral. The drawback of the aforementioned

approaches is that it does not take the advantage of the computational power of the fast

Fourier transform. Besides, the mathematical model of the FFT for option valuation

proposed by most authors lacks to obtain a numerical solution in parallel computing per-

spective. Carr and Madan [CM99] proposed two methods to determine option values

numerically using the FFT and inverse Fourier transform. If the call value function is

considered to be a function of the � ��� of its strike, the Fourier transform of the call value

can not be determined as this function is not square integrable (a function
� � ��
 is square

integrable if �
���� � � ��
 � � ��� is finite). In their first approach, the call pricing function is

multiplied by an exponential dampening factor to make it square integrable and in the

second approach the intrinsic value is subtracted from the call price function to obtain

the time value (which, before the expiration, is the difference between intrinsic value and
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the value of an option). The modified call price function now becomes square integrable

and then the Fourier transform of the call price function can be obtained numerically

when the characteristic function (described in section 2.4.1) of the risk neutral density

is known analytically. FFT is applied numerically to invert the modified call pricing

function and desired call value is obtained.

The first approach performs better than the second approach. The first approach

requires careful selection of the dampening coefficient, whereas the second approach is

robust and used when stability is the preference. In section 2.4.1, we present a review of

the Fourier analysis as it is used in option pricing. We will then improve the first approach

so as to make it amenable for parallel computing. We then discuss the improved model of

Carr and Madan’s first approach for use of FFT in parallel to calculate the option values

described in chapter 4.

2.4.1 Review of Fourier Analysis in Option Pricing

In this section, we state how most authors have applied Fourier analysis to determine

option prices. Consider a European call option of an underlying asset whose terminal

spot price is � � with maturity � . The characteristic function of � � ( � ��� � � ) is defined

as:

� � � � 
�� � � � �
��� � � � (2.24)

where � is the expectation. Assuming this characteristics function is known analytically,

Bakshi and Madan [BM97] and Scott [Sco97] calculated the risk neutral probability of
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finishing in-the-money1 as:

� � � � ����� 
 ��� � � �
�
� �
�

 �
� �

�
	 � � � �
	�� � � � 	� � 
 � � � (2.25)

where
	 � � � � is the ����� of the strike price. The delta of the option is numerically

calculated as:

��
 � �
�
� �
�

 �
� �

�
	 ��� � ��	�� � � � � � 	� � � � � � � 
 
 � � � (2.26)

Considering a constant risk less rate � and no dividends, the option value is then calcu-

lated as:

� � ����
 � � � �
� � � � � (2.27)

But in this method, the FFT can not be applied to evaluate the integral due to the

restriction of the integrand to its real part. Further discussion of FFT for option pricing

as developed by Carr and Madan [CM99], is presented separately in chapter 3 since one

of our aims is to improve on their model. Use of the Fourier technique for another special

option, as proposed by Dempster and Hong, is described in the next section.

2.4.2 Spread Option Valuation and Fast Fourier Transform

In this section, the use of an FFT model for spread option is described based on Carr

and Madan’s [CM99] approach. A Spread option is a derivative which has the terminal

pay-off equal to the difference between the prices of two assets and a fixed exercise

(strike) price. ��
 , � � are two underlying processes referring to asset or futures prices,

equity indices or bond yields forming the spread. The pay-off can then be calculated as
1in-the-money call option is a situation where the underlying asset price of the option is larger than the

strike price; at-the-money call means the asset price equals the strike price; a natural extension is for out-

of-the-money call, which corresponds to a situation where the asset price is smaller than the strike price.

These definitions are reversed for a put option.
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� � � 
 � � 
 � � � � � 
 
 � � � � where � is the strike price. Here ‘
�

’ means only the positive

result matters; if the result is negative then the pay-off is zero.

Other work using FFT for option pricing has been done by Dempster and Hong

[DH00]. They proposed the use of fast Fourier transform for pricing generic spread

options beyond the classical two-factor (deterministic and nondeterministic parts) Black-

Scholes framework. They extended Carr and Madan’s FFT technique to the multi factor

setting so this method can be applied to price more than one asset when the joint char-

acteristic function of the underlying assets forming the spread can be determined ana-

lytically. This method also allows the incorporation of stochasticity in the volatility and

correlation structure by adding some other factors. Dempster and Hong’s investigation

shows that computational time does not increase significantly for considering additional

random factors as the fast Fourier transform remains two dimensional for the two prices

defining the spread. They also showed that the FFT technique for the spread option gives

better performance over other traditional pricing methods such as Monte Carlo and PDE

techniques.

Moreover, Dempster and Hong introduced a new technique for pricing spread op-

tions for a class of models such as the Variance Gamma (VG) model [MCC98], the

inverse Gaussian model [BN97]numerous stochastic where the analytical characteristic

functions for the underlying asset prices or market rates are known. They extended Carr

and Madan’s approach to option pricing to the multi factor setting for options where the

pay-off is more complex than the piecewise-linear structure of single asset.

Review of the FFT Method

Dempster and Hong derived the value of a correlation of an option defined in [BM00]

using the approaches and notation of Madan, et al. [MCC98] for deriving European call

option on a single asset.
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If � 
 and � � are two underlying asset prices, a correlation option is a two-factor

analog of a European option where the pay-off is calculated as � � 
 � � 
 � � 
�� � � � � � � 
�� � � �
at maturity � . If � 
 , � � , � 
 , � � are the strike and asset prices (and

	 
 , 	 � , � 
 , � � - their

logarithms) then the value of the option can be calculated as:

� � � 	 
�� 	 � 
 � � ��� 	
� �
� � � � 
 � � 
 � � 
�� �

� � � � � � 
 � � � � � 

� 
 �

	�� 
 �
	�� � �

� � � �
���
� �

		�

 � �

�
�
� �

	��

 � � � � 
�� � � 
 � � � � � 
 � (2.28)

In equation (2.28), � is the risk-neutral measure and � � � � 
 � � � 
 is the corresponding joint

density of � 
 � � 
 and � � � � 
 .
The characteristic function of this density is defined by the following equations:

� � � 
�� � � 
 � � �
� 	
��� � � � � 
 � 
 � � 
 � � � � � � � � 
 
 


� 
 �

�
�

 �

�
� �

� � ��� ���
�
��� ��� 	 � � � � 
�� � � 
 � � � � � 
 � (2.29)

The integral on the right hand side of equation (2.28) is not square integrable. So

� � � 	 
�� 	 � 
 is multiplied with a decaying term so that the integration will be integrable in
	 
 , 	 � over the negative axes:

� � � 	 
 � 	 � 
 � ����� � 	�� � � � 	�� � � � 	 
 � 	 � 
 � 
 �	� � � � � (2.30)

The Fourier transform of this modified option price is:
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 �
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 � (2.31)
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The Fourier transform
� � of the option price can be calculated analytically if the

characteristics function � � is known in closed form. From the inverse Fourier transform

of equation (2.31), the option price can be calculated using:

� � � 	 
�� 	 � 
 � � � � � 	 � � � � 	 �
� � � 
 � 
 �

�
�

 �

�
� � �

� � � � 	��
�
� � 	�� 	 � � � � 
 � � � 
 ��� � � � 
 � (2.32)

Using the trapezoidal rule to approximate the integral in equation (2.32), we have:

� � � 	 
�� 	 � 
�� � � � � 		� � � � 	��
� � � 
 �

�
� 
���� � � � 
���� � � � � ��� �	� 
 	�� �

� ��� � 	�� 	 � � � � 
�
 � � � � 
 � 
 � � � 
 � (2.33)

where � 
 � � are the integration steps and

� 
�
 � ����� ���
��� � 
 � � 
 � ����� ���

��� � � � � �	� � � � � � � � � � � (2.34)

If � � � � 
���� � ��� � � � 
 � � � � � � � � 
 � � ��� � � � � � � � � � � � � � is a two-dimensional complex

input array, the Fourier transform of this input array is! � � 
 � � � � � �
� �
� 
�" � � � �

�
� 
�" � � � � �

�$#&%' � " �	( � � �$#&%' � " �)( � � � � 
 ��� � � � for all
� 
�� � � � � � � � 
 � � � � � � � � � � � � � � � � �

(2.35)

If we define a grid size of � � � �+* � ��� � 	 
�
 , � 	 � 
 - 
 � �/. � � �/. � � � � where

	 
�
 , � ��� � � �
� �10 
 � 	 � 
 - � ��� � � �

� �10 � (2.36)

Equation (2.33) can be evaluated as:2 � 	 
�� 	 � 
 � �
�
� 
��1� � � � 
��3� � � � � � � �	� 
 		� �

� ��� � 	�� 	 � � � � 
�
 � � � � 
 � 
 (2.37)

Putting 0 
 � 
 � 0 � � � � ��4� gives the following values of
2 � 	 
�� 	 � 
 on * :2 � 	 
�
 , � 	 � 
 - 
 �

�
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��1� � � � 
��3� � � � � ��� �	� 
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Now equation (2.38) can be computed by the fast Fourier transform equation (2.35)

where the two dimensional input array will be:

� � � � � ��� � � � 
 � �
� � � � � 
�
 � � � � 
 � 
 � � � � �	� � � � � � � � � � � (2.39)

For � � � different ( ����� ) strikes, the option price can be calculated approximately as:

� � � 	 
�
 , � 	 � 
 - 
�� � � � � 	��	� 5 � � � 	���� 6
� � � 
 � 2 � 	 
�
 , � 	 � 
 - 
 � � � 
 �/. � � �/. � � (2.40)



Chapter 3

FFT for Option Pricing - The CM

Model

3.1 Background

The solution for the optimal exercise policy must typically be performed numerically,

and is usually a computationally intensive problem. To price an American option, the

binomial tree approach [CRR79] has been used extensively. Recently, the option pric-

ing problem has been studied using the Fast Fourier Transform (FFT) [CM99, DH00].

Introducing a one-to-one mapping Fourier analysis to the computational domain of the

Cooley-Tukey FFT algorithm [CLW77], [TT03] explored the use of high performance

computing for this problem. Other research [TT01] showed that the FFT yields much

better performance for the derivatives under study in comparison to the binomial lattice

approach. Our goal in this thesis is to extend [TT03] the work done in two directions:

improving the CM-FFT [CM99] model mathematically (chapter 4) and designing a new

parallel FFT algorithm to improve the performance of its evaluation (chapter 5).
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3.2 The CM Model

In this section, we describe the fundamental idea behind the use of FFT for option

pricing. Further basic ideas on the use of FFT for pricing problems are described by

Cerny [Cer04]. Financial engineers use Fourier analysis to identify cyclic patterns in

asset price movements. Such processes can be either described in the time domain by h,

which is a function of time h(t), or in the frequency domain where the process is specified

by giving its amplitude, H, as a function of frequency f, that is H(f), with - � � � � � .

One goes back and forth between the representations by means of the continuous Fourier

transform equations � � � 
 � � �
�
��� � � 
�� ��4 ��� 
 � � and � � � 
 ���

�
�
� � � � 
 ��� ��4 ��� 
 � � or their

discretized forms given by:

� � � 
�� ��
�
� 
�

 � � � � � 
�� ��4 ��� 
 : �

� (3.1)

and

� � � 
 � ��
�
� 
�

 � � � � � 
�� � ��4 ��� 
 : �

� (3.2)

Since call value is a function of strike price, by approximately mapping call value

and strike price to the above equations, we can apply the Fourier transform to the option

pricing problem.

We write the call price function given by Carr and Madan [CM99] as,

� � � 	 
 � ��� � � ��� 	 

�


 �
� � �

� � 	 � � � � 
 ��� � (3.3)

where
� � � � 
 is the Fourier transform of this call price (also given by [CM99]):

� � � � 
 � 
 �

�
� �

� � 	 � � � 	 
 � 	
� 
 �

�
� �

� � 	
� �
� � 
 �

	 � � 	 � � � � �
	

 � � � � 
 � � � 	 � (3.4)

� � � � 
�� ���
� � � � � � � ��� � � 
 � 


� � � � � � � � � � � � � ��
 � � (3.5)
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� � � � 
 is odd in its imaginary part and even in its real part. Here
	

is the log strike price

� (
	 � � ��� � � 
 ) and is identical to

�
in equation (3.2) [TT03]. That is, the call option

price needs to be computed at various strike prices of the underlying assets in the option

contract. Further, � corresponds to
�

,
� � � � 
 is the Fourier transform of the call price

� � � 	 
 and � � (s) is the risk-neutral density function of the pricing model. The integral in

the right hand side of equation (3.3) is a direct Fourier transform and lends itself to the

application of the FFT in the form of summation given by equations (3.1) and (3.2).

If � � � � � 	 � � and � � � �
�

then

� � � 	 
 ��� 
 �
� � � 	 � � � � 
 ��� � (3.6)

If � " ��� � � � � 
 and the trapezoid rule is applied for the integral on the right of equation

(3.6), � � � 	 
 can be written as

� � � 	 
����
��" � 
 � � � � " 
�� ��� 	 � � 	 � � � � � � � � � (3.7)

where the effective upper limit of integration is � � and � " corresponds to various prices

with � spacing.

Therefore, in line with Carr and Madan [CM99], one can solve the option pricing

problem using Fourier analysis. For further details on the fundamentals of FFT please

refer to Cormen et al. [CLRS01] and for details on parallel FFT refer to Grama et

al. [GGKK03].

3.3 Drawback of the CM Model

To calculate the call values, equation (3.6) has to be solved analytically. The discrete

form of the above equation given as equation (3.7) is not suitable to feed into the exiting
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FFT algorithms such as Cooley-Tukey [CLW77]. Hence the CM model in its current

form cannot be used for faster pricing. This is a major drawback of using CM model for

practical purposes.

To obtain numerical solution and to take the advantage of parallel computing for real

time pricing we need to improve this mathematical model. Without loss of generality,

we will relax some of the parametric conditions and introduce modification so that the

improved mathematical model will generate feasible and tractable input values for the

FFT algorithm which will calculate accurate call values. We will then parallelize the

algorithm.

This leads us to state the objectives of this thesis as:

� Improving the mathematical model which will provide accurate solutions that will

be tractable for parallel computing,

� Designing an efficient parallel FFT algorithm which can map the mathematics to

the computational domain from the improved model and implementing the algo-

rithm on distributed memory architecture and study the performance. In parallel

algorithm two types of latency are incurred - synchronization latency and commu-

nication latency. FFT is inherently a synchronous algorithm. We have designed a

new parallel FFT algorithm which will exploit data locality by bringing data closer

to the local processor before computation so that the communication latency will

be reduced.



Chapter 4

Mathematical Improvement to the

CM-FFT Option Pricing Model

Most recent research on option valuation has successfully applied Fourier analysis to

calculate option prices. As shown earlier in equation (3.3), to obtain the analytically

solvable Fourier transform, the call price function needs to be multiplied by an exponen-

tial factor, � � 	 (
� � � 	 
 = � � 	 � � � 	 
 ). The calculation of

� � � � 
 in equation (3.5) depends

on the factor � � � ��
 , where �	� � � ��� � � 
 � . The calculation of the intermediate func-

tion � � � ��
 requires specification of the risk neutral density function, � � � � 
 . The limits

on the integral have to be selected in such a way as to generate real values for the FFT

inputs. To generate the closed form expression of the integral, the integrands, especially

the function � � � � 
 which is the risk neutral density function of the terminal � ��� price � � ,

have to be selected appropriately. Without loss of generality, we use uniform distribution

for � � � � 
 . This implies occurrence of a range of terminal log prices at equal probability,

which could, of course, be relaxed and a normal or more sophisticated distribution could

be employed. Since the volatility is assumed (low) the variation in the drift is expected
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to cause a stiffness in the system. However, since we have assumed uniform distribution

for � � � � 
 , variation in the drift is eliminated and hence the stiffness is avoided.

For numerical calculation purposes, the upper limit of equation (3.6) is assumed as a

constant value and the lower limit is assumed to be zero. The upper limit will be dictated

based on the terminal spot price. In other words, to finish the call option in-the-money,

the upper limit will have to be smaller than the terminal asset price. Therefore, the

equation is:

� � � ��
�� 
��� �
� � 	 � � � � 
 � � � 
��� ������� � � 	 
 � �

� ��� � � 	 
 
 � � � � 
 � � � (4.1)

Without loss of generality, modifications are required as derived below to essentially

achieve the mapping from Fourier space to FFT computational domain. In other words,

the purpose of these modifications is to generate feasible and tractable initial input con-

dition to the FFT from these equations. These modifications make the implementation

easier. From equation (3.4),

� � � � 
 � 
 �
� � �

� � 	
� �
� � 
 �	 ��� 	 � � � � �

	

 � � � � 
 � � � 	 (4.2)
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 � 


� ���
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 � 
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 � 


� ��� � � � � � � 
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 � � � 
 � (4.3)

Now,
� � � ��
�� 
 �� �

� ��� � � � � 
 � � � (4.4)

where 0 is the ����� of terminal spot price and integration is taken only in the positive axis.

To calculate � � � � � ��� � � 
 � 
 , � � ��� � � 
 � is substituted for � in equation (4.4) which

gives:

� � � � � ��� � � 
 � 
 � 
 �� �
� � �

� � � 
 	
�
� � � � 
 � � � (4.5)
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Assuming � � � � 
 as a uniform distribution function of the terminal ����� price, equation

(4.5) can be shown as:

� � � � � ��� � � 
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 �
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 � ����� 0 � 
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 � � ��� � � 
 �
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 	 � � ��� � ��
 � ��� � 0 � 
 � � � ��� � 0 � 
 � � � � 
 � (4.6)

if we assume �
� � � 
 	 � � ��� � � 
 � ����� 0 � 
 � � � ��� � 0 � 
 � � ��� � � 
 � � and �

� � � 
 	 � � ��� �

� 
 � � � � 0 � 
 � � � ����� 0 � 
 � � � � ��� then equation (4.6) can be written as:

� � � � � ��� � � 
 � 
 � � � � � 

��� � � 
 � � � � � � � � ����
 � (4.7)

Substituting equation (4.7) in equation (4.3) gives the following (denoted as BTT-CM):

� � � � 
�� ���
� � � � � � 
� ��� � � 
 � � � � � � ��� � � � � � � 
 � � � � � � � 
 � � � � �	 � ��� � � � � � � 
 � � � � � � � 
 � ��� � � � � ��� � � � � � � 
 ��� � � � � � � 
 � � � 
 � (4.8)

The expression above is used for the new parallel FFT algorithm (chapter 5) to com-

pute the call price function. The financial input data set for our parallel FFT algorithm

is the calculated data points of
� � � � 
 for different values of � . We call equation (4.8) as

BTT-CM equation or BTT-CM model.

We then calculate call value for different strike price values � " where � will range

from � to � . The lower limit of the strike price is zero and the upper limit is � � � � 
 �
where � is the spacing in the line of integration. Smaller values of � give fine grid



CHAPTER 4. MATHEMATICAL IMPROVEMENT TO THE CM-FFT OPTION PRICING MODEL35

integration and a smooth characteristic function of strike price and the corresponding

calculated call value.

The value of
	

on the left side of equation (3.7) represents the � ��� of the ratio of strike

to terminal spot price. The implementation of the FFT mathematical model returns �
values of

	
with a spacing size of � and these values are fed into a parallel algorithm to

calculate � values of � � � 	 
 . Here we consider cases in the range of in-the-money to

at-the-money call values. The value of
	

will be � for at-the-money call - that is where

the strike price and the exercise price are equal. The FFT yields � values of
	

and with

a regular spacing of size � , the values for
	

can be obtained from the following equation:

	 � � � � � � � �
� � 
 � for � � � � � � � � � � (4.9)

Hence, the � � � of the ratio of strike to exercise price will range from � � to � where

� �
���

� . Substituting equation (4.9) in equation (3.7) gives:

� � � 	 � 
�� ��� � � ��� 	 � 

�

��" � 
 � � � � � � � , �
� � �
� 
 	 	 � � � � " 
 � � for � � � � � � � � � � (4.10)

Replacing � " with � � � � 
 � in equation (4.10), we get

� � � 	 � 
 � ��� � � ��� 	 � 

�

��" � 
 � � ����� � " � 
 	 � � � 
 	
	 � � , ��� � � � � " 
 � � for � � � � � � � � � � (4.11)

The basic equation of the FFT is! � 	 
 � �
� 
�" � 
 � � �

�$#' � " � 
 	 � 	 � 
 	 � � ��
 � for
	 � � � � � � � � � (4.12)

Comparing equation (4.10) with the basic FFT equation, we can easily say that equation

(4.10) is also a FFT equation. To apply the FFT, we also note that � � � ��4� . Smaller

values of � will ensure fine grid for the integration. But call prices at relatively large strike

spacings ( � ), few strike prices will lie in the desired region near the stock price [CM99].

Furthermore, if we increase the values of � , we will get more intermediate points of the
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calculated call prices ( � � � 	 � 
 ) corresponding to different strike prices ( � " ). This helps

the investor to capture the call price movements of an option for different strike prices in

the market. In the experimental result (section 6.2.1) of � ����� � � 
 numbers of calculated

call values, assuming �
� � � � � with the intuition that it will ensure fine grid integration,

� is calculated as � � � ��� ��� . Similar to basic FFT equation, equation (4.10) can also be

parallelized. An efficient parallel FFT algorithm can compute fast and accurate solution

of equation (4.10).

The improvement to the CM model described in this section and given in the final

form of equation (4.8) fulfills the first objective (section 3.3) of this thesis. This improved

model generates the input data sets for our parallel FFT algorithm (described in next

chapter) to compute the call values.



Chapter 5

A New Parallel FFT Algorithm for

Option Pricing

In this chapter, first we describe the parallelization of the basic FFT equation for the sake

of completeness. Then we introduce our new data swap algorithm followed by the actual

pseudocode.

5.1 Parallelization of the FFT Equation

A sequence � of length � is � ��� � � � � � � � � � � � � � � � � � � � ��� . The discrete Fourier trans-

form (DFT) of this sequence � is a sequence
! ��� ! � � � � ! � � � � � � � � ! � � � � ��� of the same

length, where ! � � ���
�
� 
�
	 � � � � 	 � �

	 �
� �/. � � � � (5.1)

with � as the primitive � 
�� root of unity in the complex plane; that is � � � �
��4��

� 
 : � .

In FFT computations, the powers of � are called twiddle factors. Each calculation of
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CHAPTER 5. A NEW PARALLEL FFT ALGORITHM FOR OPTION PRICING 38! � � � needs � multiplications of complex numbers and � additions. Thus, the sequential

complexity using the straight forward algorithm for calculating � values of
!

in the

sequence is � � � � 
 . The Fast Fourier Transform algorithm described below reduces the

complexity to � � � � ��� � 
 .
The following steps [GGKK03] defines the basics of the FFT algorithm. Assuming

� is a power of two, an � -point DFT calculation can be converted into two � � ��� 
 -point

DFT computations, as follows:! � � ���
�9� : � 	

� 
�
	 � � � � � 	 � � � 	 � � �@� : � 	

� 
�
	 � � � � � 	 � � � � � � 	

� 
 	 �

! � � ���
�@� : � 	

� 
�
	 � � � � � 	 � � � �

�
��4��

� 
 : � 	 	 � � �9� : � 	
� 
�

	 � � � � � 	 � � � � � � � �
�

��4��
� 
 : � 	 	 �

! � � ���
�@� : � 	

� 
�
	 � � � � � 	 � � � ��4 �

� 

	 � : �9� : � 	 � � �

�9� : � 	
� 
�

	 � � � � � 	 � � � � � ��4��
� 

	 � : �9� : � 	

� (5.2)

Let �� � � �
��4 �

� 
 : �9� : � 	 � � �
; that is, �� is the primitive � � ����
 nd root of unity. Then,

we can rewrite equation (5.2) as follows:! � � ���
�@� : � 	

� 
�
	 � � � � � 	 ����

	 � � � �
�@� : � 	

� 
�
	 � � � � � 	 � � ����

	 �
� (5.3)

Each summation on the right-hand side of equation (5.3) is an � � ��� 
 -point DFT com-

putation. At each level, each DFT computation can be split into two smaller computa-

tions in a recursive manner. This leads to the development of Fast Fourier Transform

(FFT) algorithm. The FFT algorithm takes the advantage of the special properties of the

complex root of unity and it employs divide-and-conquer strategy [CLRS01]. If � is a

power of two, the maximum number of levels for the FFT computation of a series of �
of length � is � ��� � . At each level � � � 
 operation will be done. Therefore, the overall

sequential complexity will be � � � � ��� � 
 .
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Currently parallel FFT algorithm designers have given importance to block data

distribution only, instead of the parallel architecture on which the algorithm is imple-

mented or the interconnection network among the processors. The most commonly

used algorithms for FFT computation are the Cooley-Tukey [CLW77] algorithm and the

Gentleman-Sande [GS66] algorithm. These approaches differ only in their communica-

tion patterns [TT03]. Two approaches can be applied to computing the FFT algorithm:

recursive and iterative schemes. The recursive approach can be easily implemented on

a shared memory architecture and the iterative approach can be easily implemented on

distributed architectures where every processor has its own local memory and data is ex-

changed among them using message passing. In such a distributed memory architecture,

if the communication time can be somehow reduced, it would be highly beneficial.

The FFT calculation can be parallelized. The mathematical model for the FFT com-

putation can be thought of as an algebraic function that works on data-vectors. A fine-

grained distribution of loops that will implement the FFT functions at each level will

result in effective parallelization.

5.2 A New Data Swap FFT Algorithm

For general FFT computations, one of the most notable algorithm was proposed by

Cooley-Tukey [CLW77]. Figure 5.1 illustrates the data transfers performed by the par-

allel Cooley-Tukey algorithm and figure 5.2 illustrates the underlying butterfly compu-

tation. Let us assume we have � ( � � � � ) data elements and
�

(
� � � , ) processors

where � � �
. A butterfly computation is performed on each of the data points in every

iteration. The butterfly computation can be conceptually described as follows: a and b

are two points (i.e. real or complex numbers). The upper part of the butterfly operation

computes the summation of a and b with a twiddle factor � while the lower part computes



CHAPTER 5. A NEW PARALLEL FFT ALGORITHM FOR OPTION PRICING 40

the difference. In each iteration, there are
�

� summations and
�

� differences calculated

on processors.
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Figure 5.1: Cooley-Tukey Algorithm

The FFT is inherently a synchronous algorithm [GGKK03]. In general, a parallel al-

gorithm for FFT with blocked data distribution [GGKK03] where
� �

data points are allo-

cated to every processor involves communication for ����� � iterations and terminates after

� ��� � iterations. Each butterfly computation requires two data points which is a subset

of the data-vectors. As mentioned in section 5.1, the total number of stages required to

finish the FFT computation of � data points is ����� � . The butterfly computation among

� � � local data points in the same processor requires no communication. The number of

stages required to finish the butterfly computations among the data points residing in the

same processor is � ��� � � � , that is � ��� � � ����� � . The rest ����� � ������� � � ������� � � � ��� � 
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Figure 5.2: Butterfly Computation
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Figure 5.3: Data Swap Algorithm



CHAPTER 5. A NEW PARALLEL FFT ALGORITHM FOR OPTION PRICING 42

number of stages requires communications among processors to collect the partner data

point of each butterfly computation. The input data points are bit reversed before feeding

them to the parallel FFT algorithm. If we assume shuffled input data at the beginning,

the first ( � � � � � ����� � ) stages require no communication. That is, the data required

for the butterfly computation, resides in each local processor. Therefore, during the first

( � � � � � ����� � ) iterations, a sequential FFT algorithm can be used inside each processor

(called the local algorithm).

At the end of the ������� � � ����� � 
 � � iteration, the latest computed values for
� �

data

points exist in each processor. The last � ��� � stages require remote communications

(called the remote algorithm). The partners of each of the
� �

data points in processor
�

(
� � ) required to perform the butterfly computation at each iteration reside in a different

processor � (
� " ) where

� " � � � � 
 � � � � � � � 
�� �
	
�������

' 	
� 	 is the current stage number where

	 �
� � � � � � ��� � � � 
 , and � is the eXclusive OR operation). In a blocked data distribution,

therefore,
� �

data items are communicated by each processor for ����� � stages. The mes-

sage size in each case is
� �

.

From figure 5.1, we can see that calculating
! � in processor � requires two data

points, one of which resides in the local processor ( � ), and the other of which resides in

processor � . Thus, one communication is required to calculate
! � . Similarly, calculating! 
 , ! � , and

!�

need � more communications with processor � . Each processor requires

four communications to calculate � FFT outputs. In total, sixteen communications are

therefore required.

In our new data swap algorithm, depicted in figure 5.3, we apply the same blocked

data distribution and the first ( � � � � � ����� � ) stages still require no communication.

However, in the last � � � � stages that require communication, some data are swapped

at each stage and the data continue to reside in each processor’s local memory after

swapping. Therefore, the identity of some of the data points stored in each processor
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changes at each of the � � � � stages.

In figure 5.3, we can see that calculating the first two output data points in processor

� requires two input data points with index � and � and data point with index � does

not reside in the local processor. So we need one communication to bring data point �

from processor � . Similarly, calculating the next two output data points need one more

communication. Therefore, in processor � , we need two communications (not four) to

calculate four output data points. Applying the same argument, each of the processors

� , � , and � needs only two communications. In total, eight communications are required

to calculate FFT of � � data points. So in the new parallel FFT algorithm, the number

of communications is reduced by half. The data points involved in calculating
! � at the

different stages of figure 5.1 are the same nodes required to calculate
! � in figure 5.3

which proves that the calculated output values from both algorithm will be same and

consistent.

We take advantage of the the fact that communication between processors is point

to point and swap the data in a similar manner. However, in this case, only
�

�
�

data

items are communicated by each processor at every stage. It is worth noting that the

data swapping between processors at each location allows both the upper and lower part

of the butterfly computations to be performed locally by each processor. This improve-

ment enhances data locality and thereby provides performance increase in the new FFT

algorithm compared to the Cooley-Tukey algorithm.

If the inputs for the butterfly computation are complex numbers where the real and

imaginary parts are also high precision floating point numbers, then the calculated out-

put values will also be high precision complex numbers. Taking the approximation of

the calculated output for each butterfly computation at each stage of the parallel FFT

computation may deviate from the accurate result when the number of communications

increases with the increase in total number of data points.
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5.3 Pseudo Code

Pseudo code for the mathematical model:

Begin

1. Initialize parameters {S, T, r, lambda, N,

alpha, eta, delta, delta_x} for equation

(4.7) and (4.10) in chapter 4

2. Compute the constants

uni_distribution = 1/S

log_terminalspot = log10(asset_price)

p = (N * lambda)/2

e_term = exp((alpha + 1)*log_terminalspot)

nominator = exp(-r * T) * uni_distribution;

4. Computer N values of the real (fft_input.real) and

imaginary parts (fft_input.imaginary) used as

inputs to the FFT equation (4.11) in chapter 4

for j = 1 to N Do

Vj = eta * (j-1)

delta = e_term * ((alpha+1) * cos(log_terminalspot

* Vj) + Vj * sin(log_terminalspot * Vj)) - (alpha

+ 1)

delta_x = e_term * ((alpha + 1) *
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sin(log_terminalspot * Vj) - Vj * cos(log_terminalspot

* Vj)) + Vj;

denominator = (sqr(alpha + 1) + sqr(Vj)) *

(sqr((sqr(alpha) + alpha - sqr(Vj))) +

sqr(2 * alpha + 1) * sqr(Vj))

psi_T_Vj.real = (nominator * ((sqr(alpha)

+ alpha - sqr(Vj)) * delta + (2 * alpha + 1)

* Vj * delta_x ))/denominator

psi_T_Vj.imaginary = (nominator * ((sqr(alpha)

+ alpha - sqr(Vj)) * delta_x - (2 * alpha + 1)

* Vj * delta))/denominator

fft_input.imaginary = eta * (psi_T_Vj.imaginary

* cos(p * Vj) + psi_T_Vj.real * sin(p * Vj))

fft_input.real = eta * (psi_T_Vj.real * cos(p

* Vj) - psi_T_Vj.imaginary * sin(p * Vj))

End

The � numbers of the FFT input calculated at step � are then fed into our new data swap

algorithm.
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Pseudo code for the Data Swap Algorithm:

Begin

1. localsize=TotalDataSize/NumofProcessors /* assumed to

devide evenly*/

2. The FFT input data calculated are bit

reversed in the master processor.

3. The master processor distributes the data

evenly among all other (worker) processors and

RealLocalA and ImaginaryLocalA arrays contain the real

imaginary parts of each of N/P local data points.

4. Calculate log(TotalDataSize) and log(ProcessorNumber)

5. for i = 1 to log(TotalDataSize)

If we are in the first log N - log P stages

/* local algorithm*/

p = 0

for j = 0 to localsize - 1

if ((j & pow(2, i)) == 0)

RealLocalTempA[p] = RealLocalA[j ˆ pow(2, i)]

ImaginaryLocalTempA[p] = ImaginaryLocalA[j ˆ pow(2, i)]

else

RealLocalTempA[p] = RealLocalA[(j + 1) ˆ pow(2, i)]

ImaginaryLocalTempA[p] = ImaginaryLocalA[(j + 1) ˆ pow(2, i)]
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p = p + 1

j = j + 2

/*Appropiate data are available in the local processor.

Now we will do the butterfly computation*/

for j = 0 to localsize - 1

if ((j & pow(2, i)) == 0)

do butterfly calculation with the data points

stored in RealLocalTempA[p], RealLocalA[j] and

ImaginaryLocalA[j], ImaginaryLocalTempA[p]

else

do butterfly calculation with the data points

stored in RealLocalTempA[p], RealLocalA[j + 1]

and ImaginaryLocalA[j + 1], ImaginaryLocalTempA[p]

p = p + 1

j = j + 2

/*If the data is not residant in the local processor

for the last log P stages, we have to communicate

with other processors to find the data that are needed

for the butterfly computation*/

else

if ((MyRank & pow(2, i - localindex)) == 0)

dest = MyRank ˆ pow(2, i - localindex)

send all data points with odd number index

from RealLocalA and ImaginaryLocalA arrays

else

source = MyRank ˆ pow(2, i - localindex)
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receive data points from the data sending

processor and stored in RealLocalTempA and

ImaginaryLocalTempA arrays

if ((MyRank & pow(2, i-localindex)) != 0)

dest = MyRank ˆ pow(2, i - localindex)

send all data points with even number index

from RealLocalA and ImaginaryLocalA arrays

else

source = MyRank ˆ pow(2, i - localindex)

receive data points from the data sending

processor and stored in RealLocalTempA

and ImaginaryLocalTempA arrays

/*Now we have the right data in all local processors

so we can now do the butterfly computations locally*/

p = 0

for j = 0 to j < localsize - 1

if ((MyRank & pow(2, i - localindex)) == 0)

do butterfly calculation with the data points

stored in RealLocalTempA[p], RealLocalA[j] and

ImaginaryLocalA[j], ImaginaryLocalTempA[p]

else

do butterfly calculation with the data points

stored in RealLocalTempA[p], RealLocalA[j + 1]

and ImaginaryLocalA[j + 1], ImaginaryLocalTempA[p]
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p = p + 1

j = j + 2

End



Chapter 6

Results

In this section, we present the analytical results first followed by the experimental results.

6.1 Analytical Results

The first � � ��� � � ����� � 
 iterations are local computations requiring no communication.

Each processor computes the butterfly computation on its own
� �

local data items. How-

ever, the next ����� � iterations require remote communications among the processors. At

a particular iteration
�

of the ����� � iterations,
� �

data points are exchanged in the Cooley-

Tukey algorithm (figure 5.1) and
�

�
�

data points are swapped (communicated) in our

swap algorithm (figure 5.3) for each processor.

Let the startup time (
� �

), be the time required for a processor to prepare a message

(adding header, trailer, and error correction information). Then, for ����� � iterations,
� � � ��� � time is required. Let’s assume the startup times for the Cooley-Tukey algorithm

and swap algorithm are
��� �

and
� ��� �

respectively where
��� � � � ��� �

since each processor in

the Cooley-Tukey algorithm exchanges twice as much data as the swap algorithm. If

50
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the channel bandwidth is � words per second, then the per-word transfer time,
� � = 
� , is

required for a word or data point to traverse the link between processors. So the total

transfer time is
� � � � � ��� � for ����� � number of interprocessor communications for the

Cooley-Tukey algorithm and
� � �

�
� � ��� � interprocessor communications for the swap al-

gorithm. Once the data is swapped, each processor performs the upper and lower portion

of the butterfly computations on its local data. Assume each butterfly computation re-

quires time
� � . Then the total computational cost (ignoring communication cost) for the

whole FFT algorithm is
� � � � � � � � .

Therefore, the parallel runtime, ������� (�� ��� � �
	 � � and � � ��	 , of the Cooley-Tukey algo-

rithm and the swap algorithm respectively are as follows where � � � � , is the computation

time and � � � � � is the communication time:

�
����� (�� ��� � ��	 � � � � � � � , � � � � � �
� � � � � ����� � � � � � ����� � � � � � � � � � � (6.1)

for the Cooley-Tukey algorithm �

� � ��	 , � � � � � , � � � � � �
� � � � � ����� � � � � �� � ��� � � � � �

�
� ����� � for the Swap algorithm � (6.2)

Using ������� (�� ��� � ��	 � � and � � ��	 , , the speedup and efficiency calculations of both the

algorithms are as follows:

Speedup Comparison

The expression for the speedup for both algorithms are shown below:

������� (�� ��� � ��	 � � � � � � � � 	 ( � ����� (�� ��� � �
	 � � 	� , 	 ��	 ( (
��( � ����� (�� ��� � ��	 � � 	
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�
� � � � � � �� � � � ����� � � � � � ����� � � � � � � ����� �

�
� � � � � ��� �� � � ����� � � � � � � � � � � � � � � � ��� �

�
� � �� � � ����� � � ������� � 
 � � � � � � � � � 
 where � � � � � � � ��� �

�
� � �� � � ������� � 
 ��� where ��� � � ��� � � � � � � (6.3)

� � ��	 , � � � � � � 	 ( � � ��	 , 	� , 	 ��	 ( (
��( � � ��	 , 	
�

� � � � ��� �� � � � ����� � � � � �� � ��� � � � � �
�

� ����� �
�

� � � � ����� �� � � ����� � � � � � �� ����� � � � � � � ����� �
�

� � �� � � ����� � � ������� � 
 � � � � �� � � � � � 
 where � � � � � � ����� �
�

� � �� � � ������� � 
 � � where � � � � � � �� � � � � � � (6.4)

��� � � � � � � � � �
� � � � � �� � � 
 � � � � � � � � � � as

��� � � ��� ��

� � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � �

Therefore,

��� � � � � (6.5)

Applying condition (6.5) to equations (6.3) and (6.4), gives

����� � (
� � � � ��	 � � � � � ��	 , � (6.6)
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Hence, the swap algorithm produces a better speedup performance than the Cooley-

Tukey algorithm as will be shown in the experimental results section.

Efficiency Comparison

The expressions for efficiency for both algorithms are shown below

� �����
(�� ��� � �
	 � � � ������� (�� ��� � ��	 � ��

� � �� � � � � ��� � 
 ���
� (6.7)

� � ��	 , � � � ��	 ,�

� � �� � � � � ��� � 
 � � � (6.8)

Using condition (6.5) in equations (6.7) and (6.8) we can say

� �����
(�� ��� � ��	 � � � � � ��	 , � (6.9)

6.2 Experimental Results

Section 6.2.1 shows the calculated option values using our new data swap algorithm and

in section 6.2.2, we study the performance of our algorithm with respect to the parallel

Cooley-Tukey algorithm.

6.2.1 Call Value

Figure 6.1 shows how the data swap algorithm calculates the call values from the input

data set generated from the BTT-CM equation. As mentioned in chapter 4, the BTT-CM
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equation calculates
� � � � " 
 for different values of � " (strike price), where � " ��� � � � � 


and � � � � � � � . � is the strike price spacing and for a fixed strike price range (for

example � - ����� ) larger values of � gives smaller values of � . With smaller strike price

spacing, the data swap algorithm calculates more numbers of intermediate call values in

the specified region of the strike price. This depicts the change in the call price for smaller

change in the strike price. In section 6.2.2, we observe that our data swap algorithm

performs better over the Cooley-Tukey algorithm when the data sizes ( � ) increases.

Therefore, the data swap algorithm can capture the call prices for various strike prices

faster than the Cooley-Tukey algorithm.

Figure 6.1: Input and Output to the Data Swap Algorithm

The data swap algorithm calculates � number of call values ( � � � 	 � 
 where
	 �

is the
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� ��� of the ratio of the strike price � and the terminal spot price � � (market price of the

underlying asset). The call values obtained from the data swap algorithm are normalized

values with respect to the terminal spot price. In other words, call values for a given strike

price, which is the ����� of the ratio of the strike and terminal spot price, are normalized

with terminal spot price as a base. When the � � � ��	 � � � ��� � � � � � � � � ��� � the call option is

in-the-money (the value of
	 �

will be negative) and when strike and spot price are equal

the call option is at-the-money (the value of
	 �

will be zero). Whereas the call option

is out-of-the-money (the value of
	 �

will be positive), if � � � ��	 � � �
���
� � � � � � � � ��� � .

When the call option is in-the-money, the investor would prefer to exercise the option

(purchasing the option) at the strike price and immediately sell the asset in the market at

the terminal spot price. Thus, the holder can profit. When the call option is at-the-money,

the profit or loss is zero. But for the call option out-of-the-money, the investor would not

prefer to exercise it as the spot price of the asset in the market is less than the exercise

price (strike price) of the contract.
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Figure 6.2: Computed Call Values

Figure 6.2 depicts the calculated in-the-money call values for different strike prices
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using the data swap algorithm. In the experiment of call value computation, strike price

can be any value between � and ����� . Our data swap algorithm can calculate (figure 6.1)

call values for in-the-money, at-the-money and out-of-the-money call options. We are

considering in-the-money call where the terminal spot price is always greater than the

strike price. Therefore, figure 6.2 plots a portion of the calculated call values (in-the-

money) from the output values of the data swap algorithm.

For this particular experiment, (with � � � � � � , � � � � ����� ��� , and � � � � ��� ) the

terminal spot price is � � � and to calculate the in-the-money call, the strike price ranges

from � to � ��� . The plot shows that the normalized option value is decreasing with the

increase of strike price. If � is the strike price and � � is the terminal spot price of the

underlying asset, the European call value is � � � � � � � � � � 
 . With the increase of strike

price from � toward � � � , � � � � � 
 is expected to decrease, which can be seen in figure

6.2. For larger values of � we can get more number of call values computed for the

strike price range from � to � � � , which makes the plot as a continuous function.

6.2.2 Performance Results

The experiments on the performance study of the data swap algorithm were conducted

on a ��� node SunFire ������� high performance computing system running MPI at the

University of Manitoba . The Sunfire consists of Ultra Sparc III CPUs, with � � ��� MHz

clock rate and � � gigabytes of cumulative shared memory runs the Solaris � operating

system. The data generated by the BTT-CM equation in chapter 4 are used for the FFT

input.

Figure 6.3 and table 6.1 show the execution time, for different numbers of processors

of the FFT Cooley-Tukey Algorithm. As the data size increases, there is a decrease in

execution time. For a data size of �
� �

on � � processors, there is � � � � � � � ����� � � � � � local
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computations and � remote computations. At each iteration
�

�
� � �

�
�

��� � � 
�� data points

are swapped on � � processors. On a two processor machine, there are � ��� � � � � � ��� � � ���
local computations and only � remote communication. However, there is a significant

decrease in execution time using � � processors. This is attributed to the fact that in

MPI, the packing and unpacking of
�

�
� � � 
�� data elements for � processors a requires

significant amount of time.
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Figure 6.3: Execution Time of the Swap Algorithm for Various Problem Sizes

�
�

�
�

�
�

�
�

�
�

�

Data
Size

Number of
Processors � � � � �

� 
 � 3.16E-03 1.95E-03 1.33E-03 4.40E-03

� 
 �
1.86E-02 1.00E-02 8.53E-03 6.80E-03

� 
 �

7.74E-02 3.83E-02 2.33E-02 1.53E-02

� 
�� 3.69E-01 1.84E-01 9.42E-02 5.44E-02

� 
�� 1.74E+00 8.60E-01 4.38E-01 2.53E-01

�
� �

8.40E+00 4.01E+00 2.02E+00 1.08E+00

Table 6.1: Execution Time of the Swap Algorithm for Various Problem Sizes
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When we compare the swap algorithm to the Cooley-Tukey Algorithm in figure 6.4

and in table 6.2 on � � processors, the swap algorithm performs ��� � better than Cooley-

Tukey Algorithm with a data size of �
� �

. This corroborates the analytical results in

equation (6.1) and equation (6.2), where � � ��	 , � ������� (
� � � � ��	 � � .
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Figure 6.4: Comparison of the Execution Time of the Swap and Cooley-Tukey Algo-

rithms

�
�

�
�

�
�

�
�

�
�

� �

� �
Processors

Data
Size

� 
 � � 
 �
� 
 �

� 
�� � 
�� �
� �

Cooley-Tukey 5.13E-01 6.86E-01 2.54E+00 7.20E+00 3.22E+01 1.44E+02

Swap 4.40E-01 6.80E-01 1.53E+00 5.44E+00 2.53E+01 1.08E+02

Table 6.2: Comparison of the Execution Time of the Swap and Cooley-Tukey Algorithms

The speedup on � � processors for a data size of � 
�� is approximately � � as shown

in figure 6.5. As the data size decreases, however, the speedup on � � processors is

about � . When � � � 
 �
,
� � � � data items are swapped while for � � � 
�� , � � � 




items
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swapped. From equation (6.4), since the speedup is proportional to � , the speedup on

� � processors for a larger data size produces better results.
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Figure 6.5: Speedup of the Swap Algorithm with respect to Number of Processors

�
�

�
�

�
�

�
�

�
�

�

Data
Size

Number of
Processors � � � � � �

� 
 �
1 1.71E+00 3.18E+00 3.72E+00 4.68E+00

� 




1 2.02E+00 3.86E+00 6.40E+00 7.62E+00

� 
 �

1 2.03E+00 4.09E+00 6.71E+00 1.02E+01

� 
�� 1 2.02E+00 4.05E+00 7.93E+00 1.38E+01

� 
�� 1 2.14E+00 4.29E+00 8.35E+00 1.52E+01

Table 6.3: Speedup of the Swap Algorithm with respect to Number of Processors

From the speedup, we calculated the efficiency of the swap algorithm for various

processors on a fixed data size as presented in figure 6.6 and table 6.4. The efficiency for

� � processors is close to � . For � , � , and � � processors the efficiency is ��� � for data sizes

of � 
 �

, � 
�� , � 
�� respectively. Also for � and � � processors the efficiency is ��� � for sizes
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of � 
 �
and � 




respectively. These results illustrate that as the data size and the number

of processors are increased, the swap algorithm exhibits good scalability.
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Figure 6.6: Efficiency of the Swap Algorithm

�
�

�
�

�
�

�
�

�
�

�

Data
Size

Number of
Processors � � � � � �

� 
 �
1 8.54E-01 7.94E-01 4.66E-01 2.92E-01

� 




1 1.01E+00 9.66E-01 8.00E-01 4.77E-01

� 
 �

1 1.01E+00 1.02E+00 8.39E-01 4.96E-01

� 
�� 1 1.01E+00 1.01E+00 9.92E-01 8.59E-01

� 
�� 1 1.07E+00 1.07E+00 1.04E+00 9.50E-01

Table 6.4: Efficiency of the Swap Algorithm

Finally, figure 6.7 and table 6.5 compares the speedup of both the swap and Cooley-

Tukey Algorithms. The speedup of the swap algorithm for data sizes � 
�� and � 
�� for

large number of processors produces better results than the Cooley-Tukey Algorithm.

The experimental results correlates with the analytical results in equation (6.6).
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Figure 6.7: Comparison of the Speedup between the Cooley-Tukey and Swap Algorithms

In the Sunfire at the University of Manitoba, MPI is built in the system which gives

fast interconnections. In the Cooley-Tukey algorithm, the numbers of communications

are more than that in the data swap algorithm. As we have noted, the data swap algorithm

performs better on this machine. We have also experimented both the algorithms on a

cluster with non-dedicated interconnections (a cluster in the Department of Computer

Science, the University of Manitoba, commonly known as “gull” cluster). Due to the

lack of dedicated interconnection, as the number of communications increases the total

time required for the communications is much higher for the Cooley-Tukey algorithm.

Therefore, on the non-dedicated cluster, the speed increase using the data swap algorithm

over the Cooley-Tukey algorithm is far pronounced than that on the sunfire system and

hence we are not reporting our results from the gull cluster.
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�
�

�
�

�
�

�
�

�
�

� �

Number of
Processors

Data
Size

Cooley-Tukey � 
�� Swap � 
�� Cooley-Tukey � 
�� Swap � 
��

1 1 1 1 1

2 2.05E+00 2.77E+00 2.06E+00 2.79E+00

4 4.11E+00 5.54E+00 4.14E+00 5.60E+00

8 8.09E+00 1.08E+01 8.23E+00 1.09E+01

16 1.42E+01 1.88E+01 1.60E+01 1.98E+01

Table 6.5: Comparison of the Speedup between the Cooley-Tukey and Swap Algorithms



Chapter 7

Conclusions

Our research yields two significant results that comprise this thesis. As mentioned in

chapter 3, the scope of this thesis is to continue one of the earlier works [TT03] in two

directions: improving the study of the option pricing problem using the FFT mathemati-

cally and computationally. This work has provided new insights into the mathematics of

FFT for option pricing problems. Our BTT-CM model improves the mathematical model

of the Fourier transform for option pricing facilitating tractability for parallel computing,

providing efficient and accurate solutions, and improving the mathematical model so as

to design an efficient FFT algorithm. Feeding the results generated from the BTT-CM

model into the FFT algorithm facilitated a smooth transition in using the FFT algorithm

for computing call values. We also exploited the principle of data locality in the butterfly

network of the Cooley-Tukey algorithm to reduce the communication latency to obtain

better performance.

Next, we implemented the new parallel algorithm on a distributed memory machine

and studied the performance improvement attained. We have shown analytically how

our new parallel FFT algorithm performs better than the Cooley-Tukey algorithm due to
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reduced communication time achieved by swapping data points before computations to

improve data locality. Compared to the traditional Cooley-Tukey algorithm, the current

algorithm with data swapping performs better by more than ��� � for large data sizes as

confirmed by experimentation.

In summary, without loss of generality, we have first identified appropriate values

for the parameters and generated the input data set for the FFT computation using the

modified mathematical model (BTT-CM equation). A basic parallel implementation of

the FFT on a distributed platform, using MPI for message passing, was carried out first.

The communication latency was reduced by improving data locality, a main challenge in

developing a parallel FFT algorithm. We have integrated the mathematical model to the

new FFT algorithm and studied the performance results. These conclusion are reported

in two publications [BTT04a, BTT04b].

In the rapidly changing market place, these improvements could mean a lot for an

investor or financial institution.



Chapter 8

Future Work

Immediate future work based on the presented research would be to test the scalability of

the new FFT algorithm on a cluster with more processors. This is not currently possible

at the University of Manitoba due to the absence of such cluster. We are trying to access

some national facilities to do this.

Our study is based on some assumptions concerning volatility (constant) and interest

rate. The FFT approach is more flexible than other techniques because with the change of

the parametric conditions it does not change the computational time significantly. More-

over, in the FFT technique, one can add more realistic factors such as stochastic volatil-

ities and stochastic interest rates to represent a more realistic characteristics of market

dynamics. These assumptions could be relaxed with some effort as another immediate

example of future work.

To avoid the communication latency inherent in the distributed environments for the

use of FFT in real time option pricing, a real challenge is in implementing the algorithm

on shared memory and distributed shared memory architectures. In shared memory ar-

chitectures the communication latency is less pronounced depending on the design of
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the algorithm and hence, we can expect better performance. However, synchronization

remains an issue for FFT implementation on shared memory architectures. From our

investigation so far we find that the following are a few of the likely challenges for the

implementation of the algorithm on shared memory machines:

1. Thread creation, thread granularity, thread boundary are some of the important

issues needed to be considered for the implementation on shared memory archi-

tecture using OpenMP.

2. Developing a performance model in a shared address space is more difficult than

in a message passing interface. Implicit naming, replication, and coherence make

modeling performance more complicated, so performance will be quite dependent

on:

� how the synchronization of the butterfly computation at each stage of the FFT

computation can be achieved using semaphore and critical sections?

� performance study will have to consider not only the number of processors

and problem size but also number of threads, context switch time and over-

head, and data dependencies;

� how workload over processors varies with the number of threads given a fixed

data size and a fixed number of processors?

� finding the size of the thread (fine, medium or coarse grained) that will fit

best with the FFT computation for the option pricing problem. Spawning

and synchronizing threads incurs a fair amount of overhead, So finding the

optimal number of threads for the parallel FFT computation depends on the

problem size as well as the number of available processors;
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The parallel FFT algorithm that we have implemented for a distributed memory archi-

tecture can also be implemented for a distributed shared memory architecture.
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