Skip to main content

Optimizing Symmetric FFTs with Prime Edge-Length

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

  • 1128 Accesses

Abstract

It is known that a multidimensional FFT with prime edge-length p and linear symmetries in its inputs, given by a matrix S, can be computed efficiently in terms of cyclic convolutions by determining a nonsingular matrix M that commutes with S and that minimizes the number of MS-orbits. To date the only known method for determining such an M is by exhaustion, which takes time O(p 6) in the two-dimensional case and time O(p 12) in the three-dimensional case. In this work we study methods for determining M directly. Our results include algorithms which, assuming the availability of primitive polynomials, compute M in time O(p) in the two-dimensional and, in a special three-dimensional case that is important for crystallographers. Furthermore, also assuming the availability of primitive polynomials of degree three, we give an O(p 3) time algorithm to compute the M-minimal three-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auslander, L., Shenefelt, M.: Fourier Transforms that Respect Crystallographic Symmetries. IBM J. Res. and Dev. 31, 213–223 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Elspas, B.: The Theory of Autonomous Linear Sequential Networks. In: Kautz, W. (ed.) Linear Sequential Switching Circuits, pp. 21–61. Holden-Day Inc. (1965)

    Google Scholar 

  3. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  4. McCoy, N.H.: Rings and Ideals. The Carus Mathematical Monographs. The Mathematical Association of America (1956)

    Google Scholar 

  5. Lidl, R., Niederreiter, H.: Finite Fields, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 20. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  6. Orozco, E., Bollman, D., Seguel, J., Moreno, O.: Organizing Crystallographic Data. Poster presentation. In: Ponce, P.R. (ed.) 1st Conference in Protein Structure, Function and Dynamics, February 7-9 (2003)

    Google Scholar 

  7. Seguel, J., Bollman, D., Orozco, E.: A New Prime Edge-Length Crystallographic FFT. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 548–557. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Seguel, J.: Design and Implementation of a Parallel Prime Edge-Length Symmetric FFT. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 1025–1034. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Seguel, J., Burbano, D.: A Scalable Crystallographic FFT. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003. LNCS, vol. 2840, pp. 134–141. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Orozco, E., Bollman, D. (2004). Optimizing Symmetric FFTs with Prime Edge-Length. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics