Abstract
The natural neighbor interpolation is a potential interpolation method for multidimensional data. However, only globally C1 interpolants have been known so far. This paper proposes a globally C2 interpolant, and write it in an explicit form. When the data are supplied to the interpolant from a third-degree polynomial, the interpolant can reproduce that polynomial exactly. The idea used to derive the interpolant is applicable to obtain a globally Ck interpolant for an arbitrary non-negative integer k. Hence, this paper gets rid of the continuity limitation of the natural neighbor interpolation, and thus leads it to a new research stage.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)
Sibson, R.: A brief description of natural neighbour interpolation. In: Barnett, V. (ed.) Interpreting Multivariate Data, pp. 21–36. John Wiley & Sons, Chichester (1981)
Hiyoshi, H., Sugihara, K.: Improving continuity of Voronoi-based interpolation over Delaunay spheres. Computational Geometry: Theory and Applications 22, 167–183 (2002)
Farin, G.: Surfaces over Dirichlet tessellations. Computer Aided Geometric Design 7, 281–292 (1990)
Thiessen, A.H.: Precipitation averages for large areas. Monthly Weather Review 39, 1082–1084 (1911)
Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)
de Boor, C.: B-form basics. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 131–148. SIAM, Philadelphia (1987)
Barnhill, R.E., Farin, G.: C1 quintic interpolation over triangles: two explicit representations. International Journal for Numerical Methods in Engineering 17, 1763–1778 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hiyoshi, H., Sugihara, K. (2004). Improving the Global Continuity of the Natural Neighbor Interpolation. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-24767-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22057-2
Online ISBN: 978-3-540-24767-8
eBook Packages: Springer Book Archive