Skip to main content

Improving the Global Continuity of the Natural Neighbor Interpolation

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3045))

Included in the following conference series:

Abstract

The natural neighbor interpolation is a potential interpolation method for multidimensional data. However, only globally C1 interpolants have been known so far. This paper proposes a globally C2 interpolant, and write it in an explicit form. When the data are supplied to the interpolant from a third-degree polynomial, the interpolant can reproduce that polynomial exactly. The idea used to derive the interpolant is applicable to obtain a globally Ck interpolant for an arbitrary non-negative integer k. Hence, this paper gets rid of the continuity limitation of the natural neighbor interpolation, and thus leads it to a new research stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  2. Sibson, R.: A brief description of natural neighbour interpolation. In: Barnett, V. (ed.) Interpreting Multivariate Data, pp. 21–36. John Wiley & Sons, Chichester (1981)

    Google Scholar 

  3. Hiyoshi, H., Sugihara, K.: Improving continuity of Voronoi-based interpolation over Delaunay spheres. Computational Geometry: Theory and Applications 22, 167–183 (2002)

    MATH  MathSciNet  Google Scholar 

  4. Farin, G.: Surfaces over Dirichlet tessellations. Computer Aided Geometric Design 7, 281–292 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Thiessen, A.H.: Precipitation averages for large areas. Monthly Weather Review 39, 1082–1084 (1911)

    Google Scholar 

  6. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, Heidelberg (1985)

    Google Scholar 

  7. de Boor, C.: B-form basics. In: Farin, G. (ed.) Geometric Modeling: Algorithms and New Trends, pp. 131–148. SIAM, Philadelphia (1987)

    Google Scholar 

  8. Barnhill, R.E., Farin, G.: C1 quintic interpolation over triangles: two explicit representations. International Journal for Numerical Methods in Engineering 17, 1763–1778 (1981)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hiyoshi, H., Sugihara, K. (2004). Improving the Global Continuity of the Natural Neighbor Interpolation. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3045. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24767-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24767-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22057-2

  • Online ISBN: 978-3-540-24767-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics