Abstract
Real-time traffic prediction could give important information to both network efficiency and QoS guarantees. On the basis of LMS algorithm, this paper presents an improved LMS predictor – EaLMS (Error-adjusted LMS) – for fundamental traffic prediction. The main idea of EaLMS is using previous prediction errors to adjust the LMS prediction value, so that the prediction delay could be decreased. The prediction experiment based on real traffic trace has proved that for short-term traffic prediction, compared with traditional LMS predictor, EaLMS significantly reduces prediction delay, especially at traffic burst moments, and avoids the problem of augmenting prediction error at the same time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Groschitz, N.K., Polyzos, G.C.: A time series model of long-term NSFNET backbone traffic. In: Proceedings of the IEEE International Conference on Communications (ICC 1994), pp. 1400–1404 (1994)
Yu, E.S., Chen, C.Y.R.: Traffic prediction using neural networks. In: Proc. IEEE Globecom 1993, pp. 991–995 (1993)
Tarraf, A.A., Habib, I.W., Saadawi, T.N.: ATM multimedia traffic prediction using neural networks. In: Proceedings of Global Data Networking, pp. 77–84 (1993)
Liang, Y., Page, E.W.: Multiresolution Learning Paradigm and Signal Prediction. IEEE Transactions on Signal Processing, 2858–2864 (1997)
Adas, A.: Using Adaptive Linear Prediction to Support Real-Time VBR Video Under RCBR Network Service Model. IEEE/ACM Transaction on Networking, 635–644 (1998)
Chong, S., Li, S., Ghosh, J.: Predictive Dynamic Bandwidth Allocation for Efficient Transport of Real-Time VBR Video over ATM. IEEE JSAC, 12–23 (1995)
Adas, A.: Supporting Real Time VBR Video Using Dynamic Reservation Based on Linear Prediction. IEEE Trans. Signal Processing, 1156–1167 (1996)
Wang, X., Jung, Souhwan, Meditch, J.S.: Dynamic bandwidth allocation for VBR video traffic using adaptive wavelet prediction. In: Proc. IEEE ICC 1998, pp. 549–553 (1998)
Wong, R., Johston, E.: A variable step size LMS algorithm. IEEE Trans. on Signal Processing (1992)
The Internet Traffic Archive: http://ita.ee.lbl.gov/
Sang, A., Li, S.: A predictability analysis of network traffic. In: Proc. IEEE INFOCOM 2000, pp. 342–351 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xinyu, Y., Ming, Z., Rui, Z., Yi, S. (2004). A Novel LMS Method for Real-Time Network Traffic Prediction. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24768-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-540-24768-5_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22060-2
Online ISBN: 978-3-540-24768-5
eBook Packages: Springer Book Archive