Skip to main content

Self-Tuning Mechanism for Genetic Algorithms Parameters, an Application to Data-Object Allocation in the Web

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Abstract

In this paper, a new mechanism for automatically obtaining some control parameter values for Genetic Algorithms is presented, which is independent of problem domain and size. This approach differs from the traditional methods which require knowing first the problem domain, and then knowing how to select the parameter values for solving specific problem instances. The proposed method is based on a sample of problem instances, whose solution permits to characterize the problem and to obtain the parameter values.To test the method, a combinatorial optimization model for data-objects allocation in the Web (known as DFAR) was solved using Genetic Algorithms. We show how the proposed mechanism permits to develop a set of mathematical expressions that relates the problem instance size to the control parameters of the algorithm. The experimental results show that the self-tuning of control parameter values of the Genetic Algorithm for a given instance is possible, and that this mechanism yields satisfactory results in quality and execution time. We consider that the proposed method principles can be extended for the self-tuning of control parameters for other heuristic algorithms.

This research was supported in part by CONACYT and COSNET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fogel, D., Ghozeil, A.: Using Fitness Distributions to Design More Efficient Evolutionary Computations. In: Proceedings of the 1996 IEEE Conference on Evolutionary Computation, Nagoya, Japan, pp. 11–19. IEEE Press, Piscataway (1996)

    Chapter  Google Scholar 

  2. Pérez, J., Pazos, R.A., Velez, L., Rodriguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)

    Google Scholar 

  3. Back, T., Schwefel, H.P.: Evolution Strategies I: Variants and their computational implementation. In: Winter, G., Périaux, J., Galán, M., Cuesta, P. (eds.) Genetic Algorithms in Engineering and Computer Science. ch. 6, pp. 111–126. John Wiley and Sons, Chichester (1995)

    Google Scholar 

  4. Mercer, R.E., Sampson, J.R.: Adaptive Search Using a Reproductive Meta-plan. Kybernets 7, 215–228 (1978)

    Article  Google Scholar 

  5. Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. In: Sage, A.P. (ed.) IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-16(1), pp. 122–128. IEEE, New York (1986)

    Google Scholar 

  6. Smith, R.E., Smuda, E.: Adaptively Resizing Population: Algorithm Analysis and First Results. Complex Systems 9, 47–72 (1995)

    Google Scholar 

  7. Harik, G.R., Lobo, F.G.: A parameter-less Genetic Algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 258–267. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. Pérez, J., Pazos, R.A., Romero, D., Santaolaya, R., Rodríguez, G., Sosa, V.: Adaptive and Scalable Allocation of Data-Objects in the Web. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 134–143. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pérez, J. et al. (2004). Self-Tuning Mechanism for Genetic Algorithms Parameters, an Application to Data-Object Allocation in the Web. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24768-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24768-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22060-2

  • Online ISBN: 978-3-540-24768-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics