Abstract
In this paper, a new mechanism for automatically obtaining some control parameter values for Genetic Algorithms is presented, which is independent of problem domain and size. This approach differs from the traditional methods which require knowing first the problem domain, and then knowing how to select the parameter values for solving specific problem instances. The proposed method is based on a sample of problem instances, whose solution permits to characterize the problem and to obtain the parameter values.To test the method, a combinatorial optimization model for data-objects allocation in the Web (known as DFAR) was solved using Genetic Algorithms. We show how the proposed mechanism permits to develop a set of mathematical expressions that relates the problem instance size to the control parameters of the algorithm. The experimental results show that the self-tuning of control parameter values of the Genetic Algorithm for a given instance is possible, and that this mechanism yields satisfactory results in quality and execution time. We consider that the proposed method principles can be extended for the self-tuning of control parameters for other heuristic algorithms.
This research was supported in part by CONACYT and COSNET.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Fogel, D., Ghozeil, A.: Using Fitness Distributions to Design More Efficient Evolutionary Computations. In: Proceedings of the 1996 IEEE Conference on Evolutionary Computation, Nagoya, Japan, pp. 11–19. IEEE Press, Piscataway (1996)
Pérez, J., Pazos, R.A., Velez, L., Rodriguez, G.: Automatic Generation of Control Parameters for the Threshold Accepting Algorithm. In: Coello Coello, C.A., de Albornoz, Á., Sucar, L.E., Battistutti, O.C. (eds.) MICAI 2002. LNCS (LNAI), vol. 2313, pp. 119–127. Springer, Heidelberg (2002)
Back, T., Schwefel, H.P.: Evolution Strategies I: Variants and their computational implementation. In: Winter, G., Périaux, J., Galán, M., Cuesta, P. (eds.) Genetic Algorithms in Engineering and Computer Science. ch. 6, pp. 111–126. John Wiley and Sons, Chichester (1995)
Mercer, R.E., Sampson, J.R.: Adaptive Search Using a Reproductive Meta-plan. Kybernets 7, 215–228 (1978)
Grefenstette, J.J.: Optimization of Control Parameters for Genetic Algorithms. In: Sage, A.P. (ed.) IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-16(1), pp. 122–128. IEEE, New York (1986)
Smith, R.E., Smuda, E.: Adaptively Resizing Population: Algorithm Analysis and First Results. Complex Systems 9, 47–72 (1995)
Harik, G.R., Lobo, F.G.: A parameter-less Genetic Algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO 1999, pp. 258–267. Morgan Kaufmann, San Francisco (1999)
Pérez, J., Pazos, R.A., Romero, D., Santaolaya, R., Rodríguez, G., Sosa, V.: Adaptive and Scalable Allocation of Data-Objects in the Web. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 134–143. Springer, Heidelberg (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pérez, J. et al. (2004). Self-Tuning Mechanism for Genetic Algorithms Parameters, an Application to Data-Object Allocation in the Web. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24768-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-24768-5_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22060-2
Online ISBN: 978-3-540-24768-5
eBook Packages: Springer Book Archive