Skip to main content

Object Mark Segmentation Algorithm Using Dynamic Programming for Poor Quality Images in Automated Inspection Process

  • Conference paper
Computational Science and Its Applications – ICCSA 2004 (ICCSA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3046))

Included in the following conference series:

  • 784 Accesses

Abstract

This paper presents a method to segment object ID (identification) marks on poor quality images under uncontrolled lighting conditions of automated inspection process. The method is based on multiple templates and normalized gray-level correlation (NGC) method. We propose a multiple template method, called as ATM (Active Template Model) which uses a search technique of multiple templates from model templates to match and segment character regions of the inspection images. Conventional Snakes algorithm provides a good methodology to model the functional of ATM. To increase the computation speed to segment the ID mark regions, we introduce the Dynamic Programming based algorithm. Experimental results using real images from automated factory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Amini, A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Trans. Pattern Analysis and Machine Intelligence 12 (1991)

    Google Scholar 

  2. Rosenfeld, A., Kak, A.C.: Digital picture processing. Academic Press, New York (1976)

    Google Scholar 

  3. Chow, C.K., Kaneko, T.: Boundary detection of radiographic images by a thresholding method. Frontiers of Pattern Recognition, Academic Press New York, 61-82 (1972)

    Google Scholar 

  4. DongJong, K.: A fast and stable algorithm for medical images. Pattern Recognition Letters 20, 507–512 (1999)

    Article  Google Scholar 

  5. Nagy, G., Kanai, J., Krishnamoorty, M., Thomas, M., Viswanathan, M.: Two complementary techniques for digitized document analysis. In: Proceedings of the ACM conference on Document Processing Systems, Santafe New Mexico, pp. 169–176 (1988)

    Google Scholar 

  6. Aas, K.: Verification of Batch Numbers on Plastic Vials. In: Proceedings of Scandinavian Conference on Image Analysis (2001)

    Google Scholar 

  7. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Int. J. of Computer Vision 1, 321–331 (1988)

    Article  Google Scholar 

  8. Haralick, R., Shapiro, L.: Survey: Image segmentation technique. CVGIP 29, 100–132 (1985)

    Google Scholar 

  9. Horowits, S., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J. CM. 23, 368–388 (1976)

    Google Scholar 

  10. Lee, S.M.: Low rate video coding using 3-D segmentation with two change detection masks. ISO/IEC/JTC1/SC29/WG11 MPEG93/941 (1993)

    Google Scholar 

  11. Manickam, S., Roth, S.M., Bushman, T.: Intelligent and Optimal Normalized Correlation for High-Speed Pattern Matching. Datacube Technical Paper, Datacube Incorpolation (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kang, DJ., Ha, JE., Ahn, IM. (2004). Object Mark Segmentation Algorithm Using Dynamic Programming for Poor Quality Images in Automated Inspection Process. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds) Computational Science and Its Applications – ICCSA 2004. ICCSA 2004. Lecture Notes in Computer Science, vol 3046. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24768-5_96

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24768-5_96

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22060-2

  • Online ISBN: 978-3-540-24768-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics