
F. Oquendo et al. (Eds.): EWSA 2004, LNCS 3047, pp. 230–240, 2004.
 Springer-Verlag Berlin Heidelberg 2004

Towards an MDA-Based Development Methodology*

Anastasius Gavras1, Mariano Belaunde2, Luís Ferreira Pires3,
and João Paulo A. Almeida3

1 Eurescom GmbH
gavras@eurescom.de

2 France Télécom R&D
Mariano.belaunde@rd.francetelecom.com

3 University of Twente
{pires,alme}@ewi.utwente.nl

Abstract. This paper proposes a development methodology for distributed ap-
plications based on the principles and concepts of the Model-Driven Architec-
ture (MDA). The paper identifies phases and activities of an MDA-based de-
velopment trajectory, and defines the roles and products of each activity in
accordance with the Software Process Engineering Metamodel (SPEM). The
development methodology presented in this paper is being developed and ap-
plied in the European 5th Framework project MODA-TEL, which aims at as-
sessing the applicability and potential of MDA in the context of telecom ser-
vices and applications. The paper claims that the proposed methodology is
general enough to be applicable to distributed applications in other domains as
well.

1 Introduction

The Model-Driven Architecture (MDA) [6], which is being currently promoted by the
Object Management Group (OMG), consists of a set of concepts and principles for
the development of distributed applications. The MDA standards define technologies
to support these concepts and principles, but they do not prescribe nor require any
specific development methodology, by which we mean that MDA gives no guidelines
in terms of the processes (activities and phases), roles and responsibilities that are
involved in the development trajectory of a distributed application. Furthermore, the
MDA technologies are not explicitly related to identifiable activities within software
development processes, since these technologies are being developed to be generally
applicable in combination with development processes that may already be anchored
in organisations.

Since MDA does not prescribe a development methodology, each MDA-based de-
velopment project has to define its own methodology or apply existing ones. This
paper outlines the MDA-based development methodology that is being developed and
applied in the MODA-TEL project [2]. MODA-TEL is an European IST 5th Frame-
work project that aims at assessing the applicability and potential of MDA in the
context of telecom services and applications. This paper identifies phases and activi-

* An extended version of this paper is available at [9].

Towards an MDA-Based Development Methodology 231

ties in the development process, and defines the roles and products of each activity in
accordance with the Software Process Engineering Metamodel (SPEM) [3]. The
methodology presented in this paper can be seen as a framework for combining estab-
lished software development processes with the MDA concepts, principles and tech-
nologies, and thus customising the specific software engineering process that may be
used in an organisation. This allows organisations to profit from the benefits of apply-
ing MDA, like model reusability, preservation of application development invest-
ments and automated transformations, to name just a few.

The paper is further structured as follows: The next section below gives an over-
view of our methodology, in terms of its main activities and phases. After that a sec-
tion discusses the activities of the project management phase, following by a section
that discusses the project preparation activities and a section that presents the activi-
ties of the project execution phase. A final section draws some conclusions.

2 Development Activities and Phases

We start the identification of the development phases in an MDA-based project by
classifying the users of MDA technology in three categories:

• Knowledge builders: people who build knowledge (repositories) to be used in mul-
tiple different MDA-based projects. This category includes systems architects,
platform experts, quality engineers and methodology experts. We estimate that this
group amounts approximately 5% of the total MDA users population;

• Knowledge facilitators: people who assemble, combine, customise and deploy
knowledge for each specific MDA-based project. This category includes project
managers and quality engineers. We estimate that this group amounts approxi-
mately 5% of the total MDA users population;

• Knowledge users: people who apply the knowledge built and facilitated by the
other user categories, respectively. This category includes designers and software
engineers. We estimate that this group amounts approximately 90% of the total
MDA users population.

Fig. 1 illustrates the three categories of MDA technology users.

 Knowledge builders: build knowledge repositories

Architects Platform
experts

Quality
engineers

Methodology
experts

Knowledge facilitators: assemble, combine and deploy knowledge

Project
managers

Quality
engineers

 Knowledge users: apply knowledge

Designers Software
engineers

Fig. 1. Categories of MDA users.

232 Anastasius Gavras et al.

Fig. 1 shows that different roles and skills can be identified in the MDA users
population. These roles perform different activities and require different tools.

In any MDA-based project, the distinction between preparation activities and exe-
cution activities is essential. Preparation activities are those that structure and plan the
work, and as such they enable knowledge reuse, which is one the main benefits of the
MDA. Preparation activities are mainly performed by knowledge builders and should
start before the project execution activities. However, it should be possible to switch
between preparation and execution activities, allowing the preparation activities to be
revisited while the execution activities are being carried out. This is necessary be-
cause project requirements may change (e.g., change of platform), more detailed re-
quirements may be defined (e.g., some requirements were not detailed enough) and
problems may occur in the execution phase (e.g., selected modelling language is
found too limited or not expressive enough), amongst others.

The MODA-TEL methodology identifies the following phases:

1. Project management: aims at organising and monitoring the project;
2. Preliminary preparation: aims at identifying modelling and transformation needs;
3. Detailed preparation: aims at obtaining the modelling and transformation specifi-

cations;
4. Infrastructure setup: aims at making tool support and metadata management facili-

ties ready to use;
5. Project execution: aims at producing the necessary software artefacts and the final

products.

Fig. 2 shows the five phases of the MODA-TEL methodology and their relation-
ships. For reasons of conciseness, in Fig. 2 we have omitted the relationships between
the project management phase and the other phases.

Precedence dependency
Dependency

Strong feedback
Weak feedback

4

3

2

5

Project Execution

Infrastructure setup

Preliminary preparation

Detailed preparation

Project execution

4

3

2

Project
management

1

5

Preparation activities

Fig. 2. Development phases.

The phases of our methodology correspond to the available and required expertise
identified before, and, therefore, these phases can be directly associated with the parti-
tioning of the MDA users expertise shown in Fig. 1: phase 1 is mainly performed by

Towards an MDA-Based Development Methodology 233

knowledge facilitators, phases 2, 3 and 4 are mainly performed by knowledge build-
ers, while phase 5 is mainly performed by knowledge users.

Fig. 2 shows how the preparation activities have been structured in different
phases. These phases are useful to understand and to describe the dependencies be-
tween the activities. Project management activities have a direct impact on all the
other activities; in particular, the activity that defines the whole software development
process prescribes the list of the execution activities to be performed, such as, e.g., the
sequence of transformations to be implemented. Activities of the preliminary and
detailed preparation phases, such as selecting a platform and deciding on the usage of
a modelling language, are the key elements to enable reuse of knowledge in the pro-
ject execution phase. Finally, the activities of the infrastructure set-up phase, such as,
e.g., tool selection, influence the preliminary and detailed preparation phases, even if
project managers have decided to be as much tool-independent as possible.

Fig. 2 also shows that many dependencies have been identified between the devel-
opment phases of our methodology, which means that these phases should be per-
formed iteratively and incrementally. Feedback from the execution activities to the
preparation activities, and vice-versa, should be taken into account in an effective
way. The availability of model-to-model transformations, code generation techniques
and well-defined traceability strategies are crucial for this purpose.

3 Project Management Phase

We distinguish between typical process management activities, such as keeping track
of milestones and resource consumption, and activities that are directly related to
management decisions absolutely necessary to setup the project, such as the selection
of the engineering process. Additional activities known and applied from “best prac-
tices” in project management can still be added to this phase, but are not explicitly
covered by our methodology.

The management activities identified here may be strongly influenced by prepara-
tion activities, e.g., in case SPEM [3] is used to explicitly describe the engineering
process, and by execution activities, such as requirements analysis.

In the project management phase we have identified three activities:

• Software Development Process (SDP) selection, which results in the description of
the software development process to be followed at the execution phase, in terms
of specific sub-activities and the resulting work products. A discussion on the use
of MDA in combination with some established software development processes
can be found in [4];

• Project organisation (identification of roles), which results in the allocation of
activities to process roles;

• Quality management, which defines procedures to enhance the quality of the de-
velopment projects. Some aspects of quality management can be orthogonal to the
SDP, such as, for example, the maturity levels of the Capability Maturity Model
(CMM) [7].

Fig. 3 depicts the activities of the process management phase and the relationships
between these activities.

234 Anastasius Gavras et al.

Software
Development

Process (SDP)
Selection

Project
Organisation
(Identification

Of Roles)

Quality
Management

Software
Development

Process (SDP)
selection

Project
organisation
(identification

of roles)

Project management

Quality
management

Fig. 3. Project management activities.

Since MDA is based on the principles of object-orientation and component-based
development it fits well into most contemporary software development processes.
MDA has been conceived to allow the existing development processes in organisa-
tions and projects to be reused to a large extent, since MDA concepts can be applied
in the scope of these processes.

We use the term Model Driven Engineering (MDE) to denote the process of apply-
ing an MDA-based SPD. The engineering aspects, i.e., the designing, building and
maintaining pieces of software, are dynamic and contrast with the static nature of a set
of models. There is no single way to engineer software and many different alterna-
tives can be found by reusing elements of some established software development
processes.

Fig. 4 shows the relationship between the SDP selection activity of the process
management phase and the project execution phase.

Fig. 4. Influence of the SDP on the project execution phase.

4 Preparation Activities

The preparation activities have been grouped in three phases, namely preliminary
preparation, detailed preparation and infrastructure setup. Each of these phases and
their relationships with other phases are discussed below.

Towards an MDA-Based Development Methodology 235

4.1 Preliminary Preparation Phase

In the preliminary preparation phase we identify four activities:

• Platform identification: a platform refers to technological and engineering details
that are irrelevant to the fundamental functionality of a system (or system part).
What is irrelevant and what is fundamental with respect to a design depends on
particular design goals in different stages of a design trajectory. Therefore, in order
to refer to platform-independent or platform-specific models, one must define what
a platform is, i.e., which technological and engineering details are irrelevant, in a
particular context with respect to particular design goals. In this activity we iden-
tify the concrete target platform(s) on which the application is supposed to be im-
plemented and their common abstraction in terms of an abstract platform [1]. Con-
crete platforms may also include legacy platforms;

• Modelling language identification: models must be specified in a modelling lan-
guage that is expressive enough for its application domain. This activity identifies
the specific needs for modelling languages. Since models can be used for various
different purposes, such as data representation, business process specification, user
requirements capturing, etc., many different modelling languages may be necessary
in a development project. Process roles for performing this activity include domain
experts;

• Transformations identification: transformations define how model elements of a
source model are transformed into model elements of a target model. This activity
identifies the possible or necessary transformation trajectories from the abstract to
the concrete platforms. These transformations have to take into account the model-
ling languages identified before;

• Traceability strategy definition: traceability in model transformation refers to the
ability to establish a relationship between (sets of) model elements that represent
the same concept in different models. Traces are mainly used for tracking require-
ments and changes across models. This activity defines the strategy to be applied in
the definition of traces along the development trajectory.

Fig. 5 shows the activities of the preliminary preparation phase.

Platform
Identification

Modelling
Language

Identification

Preliminary preparation

Transformation
Identification

Traceability
Strategy

Platform
identification

Modelling
language

identification

Transformation
identification

Traceability
strategy

Fig. 5. Preliminary preparation activities.

The activities of the preliminary preparation phase often depend on the require-
ment analysis activity of the project execution phase (see next section), as depicted in
Fig. 6.

In case model-driven techniques are used for requirement analysis, certain prelimi-
nary preparation activities may precede requirement analysis. For example, this can
be the case if a UML profile or a metamodel is available for the User Requirement

236 Anastasius Gavras et al.

Notation (URN) [8]. Identifying such a profile or metamodel is a preliminary prepara-
tion activity to be performed before requirements analysis.

4.2 Detailed Preparation Phase

In the detailed preparation phase we have identified two activities:

• Specification of modelling languages: in accordance with the specific needs for
modelling languages identified before, this activity identifies the concrete general
purpose or domain specific modelling languages that shall be used in the execution
phase. Source and target metamodels used in the transformations are also defined
in this activity. Process roles for performing this activity include domain experts;

• Specification of transformations: model transformations need rules and annotations
to control the transformation process. Rules control the transformation of an anno-
tated source model to a target model. Rules have to be defined at the metamodel
level, in order to be applicable to any instance of the source metamodel that is
transformed to an instance of the target metamodel. Rules can be formalized in a
certain modelling language or metamodel, or they may be defined as code in a
scripting or programming language. Annotations are information related to a
model, optionally defined in terms of elements of this model’s metamodel. This ac-
tivity is concerned with the specification of the necessary transformation rules and
annotations.

Fig. 7 shows the activities of the detailed preparation phase.
Language and transformation specifications produced in this phase are strong can-

didates for reuse, namely in future projects in similar application domains. Therefore
these specifications should be somehow stored and catalogued for future use. These
reuse considerations are also depicted in Fig. 7.

4.3 Infrastructure Setup Phase

In the infrastructure setup phase we have identified two activities:

Fig. 6. Influence of requirements analysis on the preliminary preparation phase.

Towards an MDA-Based Development Methodology 237

• Tool selection: a number of activities in our methodology have to be handled by
tools, such as (i) the definition of models and metamodels, (ii) the transformation
and code generation based on model information, (iii) the definition of constraints
and rules to verify model compliance. This activity aims at selecting of one or
more tools to support activities in the development process. For the selection of
appropriate tools, all requirements from the software engineering perspective are
identified and mapped to capabilities of existing tools available on the market;

• Metadata management: metadata provides in most cases information about the
structure of data, e.g., which data types are available, the structure of these data
types, what data aggregations are valid, etc. Different technology families usually
define their own ways to manage metadata, as well as to generate and manipulate
metadata repositories. Metadata can be used in different situations, like, e.g., to
store information about transformations, to store information about available re-
sources, to support migration or to support applications during runtime. In each
project, the necessary support for metadata as well as the way to manage metadata
is defined in this activity.

Fig. 8 shows the activities of the infrastructure setup phase.

Tool
Selection

Infrastructure setup

Tool
selection

Metadata
management

Fig. 8. Infrastructure setup activities.

The tool selection activity can be quite intricate. The choice of the most appropri-
ate MDA tool depends mainly on the level of engineering support required in the
project. In some projects, MDA tools may be required to support behaviour modelling
and simulation. In general MDA tools should also give support to traceability, for
example, to associate code fragments to their corresponding model elements in order
to guarantee that changes in the code are reflected in the model and vice-versa. Exten-
sibility, integration with XML-based techniques and interoperability with other tools
may also be important requirements to consider. Furthermore, other circumstances
like the availability of a certain tool in an organisation or the experience of the de-

Specification
of Modelling
Languages

Reuse observations

Detailed preparation

Specification of
Transformations

Specification
of modelling
languages

Reuse considerations

Specification of
transformations

Fig. 7. Detailed preparation activities.

238 Anastasius Gavras et al.

signers with some specific tool may strongly influence if not determine the choice.
The tool selection activity may have an impact on each of the preparation activities, as
well as on the metadata management activity.

5 Execution Phase

The project execution phase is the main phase of a project, since in this phase the
developers apply the acquired knowledge to produce software artefacts and deliver
the final products. The specific activities of this phase depend on the selected SDP,
which is described in terms of sub-activities and work products. However, for the
purpose of our methodology we have identified general activities that appear in virtu-
ally any object-oriented or component-based SDP. Our methodology has identified
seven activities in the project execution phase:

• Requirements analysis: this activity generally aims at (i) establishing a dictionary
with well-defined terminology and (ii) structuring the requirements. Both the dic-
tionary and the requirements are normally used as input to produce conceptual do-
main models. Requirements should also be associated to their corresponding model
elements, allowing traceability from requirements to models or even to code. It
may be even possible to have some model-to-model transformation that creates an
initial platform-independent model (PIM) from requirements models;

• Modelling: this activity comprises the formal specification, construction, documen-
tation and (possibly) visualisation of artefacts of distributed systems, using one or
more modelling languages. This activity is concerned with the development of
software engineering specifications that are expressed as an object or component
model or combinations thereof. The products of this activity are specifications of
the structure of these artefacts, such as names, attributes and relationships with
other artefacts. Behaviour specifications describe the behaviour of the artefacts in
terms of states, allowed transitions and the events that can cause state changes. The
interactions between artefacts may also be represented in behaviour specifications.
These models are created with the help of tools that support the representation of
the artefacts and their behaviour;

• Verification/Validation: this activity is concerned with (i) determining whether or
not the products of the modelling activity fulfil the requirements established by the
requirements analysis activity, and (ii) evaluating whether the products of the mod-
elling activity are free from failures and comply with the requirements established
in the requirements analysis activity. Some existing technologies allow these ac-
tivities to be performed (semi-) automatically by using tool support. A verifica-
tion/validation strategy for the produced models has to be explicitly defined in this
activity;

• Transformations: this activity is concerned with the refinement of the models pro-
duced in the modelling activity by means of rules and annotations that control the
transformation process. The artefacts defined by the modelling activity are refined
by defining data structures and procedures, defining message protocols for the in-
teractions, mapping the artefacts into classes and mapping these onto constructs of
a programming language (model-to-code transformations);

Towards an MDA-Based Development Methodology 239

• Coding/Testing: this activity is concerned with the development of code that is
necessary to complement the automated code generation. With current technology,
somecoding is still required by developers after a model-to-code transformation
has been performed. The same applies for the execution of test cases. Automatic
testing is possible to some extent, but usually manual testing is also necessary to
complement the testing activities;

• Integration/Deployment: this activity is concerned with the embedding of the
newly developed systems into their operational environment. In large organisa-
tions, new services and applications have to co-exist with established systems and
work on existing infrastructures. The MDA prescribes that (new) functionality
should be modelled at the platform-independent level. Since platform-independent
models of the existing (legacy) systems can be developed by applying reverse en-
gineering, integration issues can be addressed already at the platform-independent
level. The deployment sub-activity is concerned with the management of the life-
cycle of component instances running on the nodes of a platform. This sub-activity
handles issues like, e.g., the transfer of implementations to the appropriate nodes,
and instantiation, configuration, activation and deactivation of component in-
stances;

• Operation/Maintenance: this activity is concerned with the overall management of
the life-cycle of a distributed application, including issues like, e.g., dynamic con-
figuration, dynamic service upgrade, and service migration to different nodes;

Fig. 9 shows the activities of the project execution phase.

Project execution

Requirements
Analysis Modelling Verification

Validation

Transformations
(Marking �)

Coding
Testing

Integration
Deployment

Operation
Maintenance

Requests for process and methods re engineering

Requirements
Analysis Modelling Verification

Validation

Coding
Testing

Integration
Deployment

Operation
Maintenance

Requirements
analysis Modelling Verification/

Validation

Transformations Coding/
Testing

Integration/
Deployment

Operation/
Maintenance

Fig. 9. Project execution activities.

In general, the activities in the project execution phase can be repeated more than
once, e.g., if multiple development iteration cycles are applied or errors are found. In
case failures, defects or other problems are discovered in one of the activities, the
process should resolve the issue at the modelling activity, since models are supposed
to drive the whole process execution phase. All activities of the project execution
phase can generate feedback to refine and improve of the processes and methods,
influencing in this way the preliminary or the detailed preparation phases or both,
depending on the severity of the feedback.

240 Anastasius Gavras et al.

6 Conclusions

A development methodology should define guidelines to be used in a development
project, in terms of the necessary activities, roles, work products, etc. The methodol-
ogy presented in this paper gives such guidelines and combines them with the con-
cepts and principles of the MDA. The methodology itself is under development and
its application on case studies that are being performed in the MODA-TEL project,
will certainly provide the necessary feedback and refinement to improve its applica-
bility. An MDA-based development trajectory can require many different meta-
models, models, transformations and their supporting tools. From our first experience
with use cases under study, we can conclude that the MDA approach requires that the
engineering process is explicitly described and documented in terms of the necessary
work products and activities. The explicit definition of the engineering process makes
an MDA-based project manageable. An extended version of this paper [9] illustrates
the activities of this methodology with a case study on the development of a
VoiceXML application.

References

1. J.P.A. Almeida, M.J. van Sinderen, L. Ferreira Pires, D.A.C. Quartel. A systematic ap-
proach to platform-independent design based on the service concept. In Proceedings of the
Seventh IEEE International Conference on Enterprise Distributed Object Computing
(EDOC 2003), Brisbane, Australia, September 2003.

2. http://www.modatel.org
3. MODA-TEL project. Deliverable D3.1: Model-Driven Architecture definition and meth-

odology, 2003. http://www.modatel.org/public/deliverables/D3.1.htm
4. MODA-TEL project. Deliverable D3.2: Guidelines for the application of MDA and the

technologies covered by it, 2003. http://www.modatel.org/public/deliverables/D3.2.htm
5. Object Management Group. Software Process Engineering Meta-model V1.0 (SPEM), for-

mal/02-11-14, November 2002
6. Object Management Group. MDA-Guide, V1.0.1, omg/03-06-01, June 2003
7. Software Engineering Institute. The Capability Maturity Model: guidelines for improving

the software process. Carnegie Mellon Univ. Addison Wesley Publishing Company, 1995
8. ITU-T. Recommendation Z.150: User Requirements Notation (URN): Language require-

ments and framework. Geneva, February 2003.
9. A. Gavras, M. Belaunde, L. Ferreira Pires, J.P.A. Almeida, Towards an MDA-based de-

velopment methodology for distributed applications, in M. van Sinderen, L. Ferreira Pires
(eds.): Proceedings of the 1st European Workshop on Model-Driven Architecture with
Emphasis on Industrial Applications, MDA-IA 2004, CTIT Technical Report TR-CTIT-
04-12, University of Twente, ISSN 1381 - 3625, Enschede, The Netherlands, March 2004,
71-81.

	1 Introduction
	2 Development Activities and Phases
	3 Project Management Phase
	4 Preparation Activities
	4.1 Preliminary Preparation Phase
	4.2 Detailed Preparation Phase
	4.3 Infrastructure Setup Phase

	5 Execution Phase
	6 Conclusions
	References

