Skip to main content

Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

In this paper posibility of design and optimization of combinational digital circuits using modified evolutionary algorithm is presented. Modification of evolutionary algorithm depends on introduction of multilayer chromosomes and genetic operators operating on them. Design results for four combinational circuits obtained using this method are compared with described in literature methods: Karnaugh Maps, Quine-McCluskey and NGA and MGA genetic algorithms. Described evolutionary algorithm leads in many cases to better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karnaugh, M.: A Map Method for Synthesis of Combinational Logic Circuits. Transaction of the AIEE, Communications and Electronic 72(I), 593–599 (1953)

    MathSciNet  Google Scholar 

  2. Quine, W.V.: A Way to Simplify Truth Function. American Mathematical Monthly 62(9), 627–631 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  3. McCluskey, E.J.: Minimization of Boolean Function. Bell Systems Technical Journal 35(5), 1417–1444 (1956)

    MathSciNet  Google Scholar 

  4. Miller, J., Kalganova, T., Lipnitskaya, N., Job, D.: The Genetic Algorithm as a Discovery Engine: Strange Circuits and New Principles. In: Proceedings of the AISB Symposium on Creative Evolutionary Systems (CES 1999), Edinburgh, UK (1999)

    Google Scholar 

  5. Kalganova, T., Miller, J.: Evolving more efficient digital circuits by allowing circuit layout and multi-objective fitness. In: Proceedings of the First NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, pp. 54–63 (1999)

    Google Scholar 

  6. Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Automated Design of Combinational Logic Circuits using Genetic Algorithms. In: Proceedings of the International Conference on Artificial Neural Nets and Genetic Algorithms, April 1997, pp. 335–338 (1997)

    Google Scholar 

  7. Coello, C.A., Aguirre, A.H., Buckles, B.P.: Evolutionary Multiobjective Design of Combinational Logic Circuits. In: Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, Los Alamitos, California, July 2000, pp. 161–170 (2000)

    Google Scholar 

  8. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum, Mahwah (1985)

    Google Scholar 

  9. Coello, C.A., Christiansen, A.D., Aguirre, A.H.: Use of Evolutionary Techniques to Automate the Design of Combinational Circuits. International Journal of Smart Engineering System Design (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Słowik, A., Białko, M. (2004). Design and Optimization of Combinational Digital Circuits Using Modified Evolutionary Algorithm. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics