Skip to main content

Comparison of Instance Selection Algorithms II. Results and Comments

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

This paper is an continuation of the accompanying paper with the same main title. The first paper reviewed instance selection algorithms, here results of empirical comparison and comments are presented. Several test were performed mostly on benchmark data sets from the machine learning repository at UCI. Instance selection algorithms were tested with neural networks and machine learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408–421 (1972)

    Article  MATH  Google Scholar 

  2. Grochowski, M.: Wybór wektorów referencyjnych dla wybranych method klasyfikacji. Master’s thesis, Department of Informatics, Nicholas Copernicus University, Poland (2003)

    Google Scholar 

  3. Jankowski, N.: Data regularization. In: Rutkowski, L., Tadeusiewicz, R. (eds.) Neural Networks and Soft Computing, Zakopane, Poland, pp. 209–214 (2000)

    Google Scholar 

  4. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 14, 515–516 (1968)

    Article  Google Scholar 

  5. Chang, C.L.: Finding prototypes for nearest neighbor classifiers. IEEE Transactions on Computers 23, 1179–1184 (1974)

    Article  MATH  Google Scholar 

  6. Gates, G.: The reduced nearest neighbor rule. IEEE Transactions on Information Theory 18, 431–433 (1972)

    Article  Google Scholar 

  7. Aha, D.W., Kibler, D., Albert, M.K.: Aha. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  8. Bhattacharya, B.K., Poulsen, R.S., Toussaint, G.T.: Application of proximity graphs to editing nearest neighbor decision rule. In: International Symposium on Information Theory, Santa Monica (1981)

    Google Scholar 

  9. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–286 (2000)

    Article  MATH  Google Scholar 

  11. Kohonen, T.: Learning vector quantization for pattern recognition. Technical Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland (1986)

    Google Scholar 

  12. Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: International Conference on Machine Learning, pp. 293–301 (1994)

    Google Scholar 

  13. Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random mutation hill climbing. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, pp. 99–106 (1995)

    Google Scholar 

  14. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  15. Hippe, Z.S., Iwaszek, G.: From research on a new method of development of quasi-optimal decision trees. In: Kopotek, M., Michalewicz, M., Wierzcho, S.T. (eds.) Intelligent Information Systems IX, Warszawa. Institute of computer science, pp. 31–35 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grochowski, M., Jankowski, N. (2004). Comparison of Instance Selection Algorithms II. Results and Comments. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_87

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics