Skip to main content

Comparison of Instances Seletion Algorithms I. Algorithms Survey

  • Conference paper
Artificial Intelligence and Soft Computing - ICAISC 2004 (ICAISC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3070))

Included in the following conference series:

Abstract

Several methods were proposed to reduce the number of instances (vectors) in the learning set. Some of them extract only bad vectors while others try to remove as many instances as possible without significant degradation of the reduced dataset for learning. Several strategies to shrink training sets are compared here using different neural and machine learning classification algorithms. In part II (the accompanying paper) results on benchmarks databases have been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Duda, R.O., Hart, P.E., Stork, D.G.: Patter Classification and Scene Analysis, 2nd edn. Wiley, Chichester (1997)

    Google Scholar 

  2. Aha, D.W., Kibler, D., Albert, M.K.: Aha. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  3. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. Institute of Electrical and Electronics Engineers Transactions on Information Theory 13, 21–27 (1967)

    MATH  Google Scholar 

  4. Hart, P.E.: The condensed nearest neighbor rule. IEEE Transactions on Information Theory 14, 515–516 (1968)

    Article  Google Scholar 

  5. Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.: An algorithm for a selective nearest neighbor decision rule. IEEE Transactions on Information Theory 21, 665–669 (1975)

    Article  MATH  Google Scholar 

  6. Gates, G.: The reduced nearest neighbor rule. IEEE Transactions on Information Theory 18, 431–433 (1972)

    Article  Google Scholar 

  7. Wilson, D.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems, Man, and Cybernetics 2, 408–421 (1972)

    Article  MATH  Google Scholar 

  8. Cameron-Jones, R.M.: Instance selection by encoding length heuristic with random mutation hill climbing. In: Proceedings of the Eighth Australian Joint Conference on Artificial Intelligence, pp. 99–106 (1995)

    Google Scholar 

  9. Bhattacharya, B.K., Poulsen, R.S., Toussaint, G.T.: Application of proximity graphs to editing nearest neighbor decision rule. In: International Symposium on Information Theory, Santa Monica (1981)

    Google Scholar 

  10. Brighton, H., Mellish, C.: Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery 6, 153–172 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Skalak, D.B.: Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: International Conference on Machine Learning, pp. 293–301 (1994)

    Google Scholar 

  12. Schölkopf, B., Smola, A.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  13. Grab̧czewski, K., Duch, W.: A general purpose separability criterion for classification systems. In: 4th Conference on Neural Networks and Their Applications, pp. 203–208. Polish Neural Networks Society, Zakopane (1999)

    Google Scholar 

  14. Adamczak, R., Duch, W., Jankowski, N.: New developments in the feature space mapping model. In: Third Conference on Neural Networks and Their Applications, pp. 65–70. Polish Neural Networks Society, Kule (1997)

    Google Scholar 

  15. Jankowski, N., Kadirkamanathan, V.: Statistical control of RBF-like networks for classification. In: 7th International Conference on Artificial Neural Networks, pp. 385–390. Springer, Lausanne (1997)

    Google Scholar 

  16. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics 6, 448–452 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grochowski, M.: Wybór wektorów referencyjnych dla wybranych method klasyfikacji. Master’s thesis, Department of Informatics, Nicholas Copernicus University, Poland (2003)

    Google Scholar 

  18. Jankowski, N.: Data regularization. In: Rutkowski, L., Tadeusiewicz, R. (eds.) Neural Networks and Soft Computing, Zakopane, Poland, pp. 209–214 (2000)

    Google Scholar 

  19. Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38, 257–286 (2000)

    Article  MATH  Google Scholar 

  20. Kohonen, T.: Learning vector quantization for pattern recognition. Technical Report TKK-F-A601, Helsinki University of Technology, Espoo, Finland (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jankowski, N., Grochowski, M. (2004). Comparison of Instances Seletion Algorithms I. Algorithms Survey. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds) Artificial Intelligence and Soft Computing - ICAISC 2004. ICAISC 2004. Lecture Notes in Computer Science(), vol 3070. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24844-6_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24844-6_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22123-4

  • Online ISBN: 978-3-540-24844-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics