Abstract
Conditions on type preorders are provided in order to characterize the induced filter models for the λ-calculus and some of its restrictions. Besides, two examples are given of filter models in which not all the continuous functions are representable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abramsky, S., Luke Ong, C.-H.: Full abstraction in the lazy lambda calculus. Inform. and Comput. 105(2), 159–267 (1993)
Alessi, F.: The category p-sfp. Internal Report n. 27/96/RR, Dipartimento di Matematica e Informatica, University of Udine (1996)
Alessi, F., Barbanera, F., Dezani-Ciancaglini, M.: Intersection types and computational rules. In: de Queiroz, R., Pimentel, E., Figueiredo, L. (eds.) WoLLIC 2003. El. Notes in Theoret. Comput. Sci, vol. 84, Elsevier, Amsterdam (2003)
Alessi, F., Dezani-Ciancaglini, M., Honsell, F.: A complete characterization of complete intersection-type preorders. ACM Trans. on Comput. Logic 4(1), 120–147 (2003)
Alessi, F., Dezani-Ciancaglini, M., Lusin, S.: Intersection types and domain operators. Theoret. Comput. Sci. (2004) (to appear)
Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symbolic Logic 48(4), 931–940 (1984), 1983
Berline, C.: From computation to foundations via functions and application: The λ-calculus and its webbed models. Theoret. Comput. Sci. 249, 81–161 (2000)
Coppo, M., Dezani-Ciancaglini, M., Honsell, F., Longo, G.: Extended type structures and filter lambda models. In: Lolli, G., Longo, G., Marcja, A.L. (eds.) Logic colloquium 1982, pp. 241–262. North-Holland, Amsterdam (1984)
Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Functional characters of solvable terms. Z. Math. Logik Grundlag. Math. 27(1), 45–58 (1981)
Coppo, M., Dezani-Ciancaglini, M., Zacchi, M.: Type theories, normal forms, and D∞-lambda-models. Inform. and Comput. 72(2), 85–116 (1987)
Curry, H.B., Feys, R.: Combinatory Logic. Studies in Logic and the Foundations of Mathematics, vol. I. North-Holland, Amsterdam (1958)
Dezani-Ciancaglini, M., Ghilezan, S., Likavec, S.: Behavioural inverse limit models. Theoret. Comput. Sci. (2004) (to appear)
Dezani-Ciancaglini, M., Honsell, F., Motohama, Y.: Compositional characterization of λ-terms using intersection types. Theoret. Comput. Sci. (2004) (to appear)
Egidi, L., Honsell, F., Rocca, S.R.D.: Operational, denotational and logical descriptions: a case study. Fund. Inform. 16(2), 149–169 (1992)
Gierz, G.K., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: A Compendium of Continuous Lattices. Springer, Berlin (1980)
Hindley, R., Longo, G.: Lambda-calculus models and extensionality. Z. Math. Logik Grundlag. Math. 26(4), 289–310 (1980)
Honsell, F., Lenisa, M.: Semantical analysis of perpetual strategies in λ-calculus. Theoret. Comput. Sci. 212(1-2), 183–209 (1999)
Honsell, F., Rocca, S.R.D.: An approximation theorem for topological lambda models and the topological incompleteness of lambda calculus. J. Comput. SystemSci. 45(1), 49–75 (1992)
Johnstone, P.T.: Stone spaces. Cambridge University Press, Cambridge (1986) (Reprint of the 1982 edn)
Meyer, A.R.: What is a model of the lambda calculus? Inform. and Control 52(1), 87–122 (1982)
Plotkin, G.D.: Call-by-name, call-by-value and the λ-calculus. Theoret. Comput. Sci. 1(2), 125–159 (1975)
Plotkin, G.D.: Set-theoretical and other elementary models of the λ-calculus. Theoret. Comput. Sci. 121(1-2), 351–409 (1993)
Scott, D.S.: Open problem. In: Böhm, C. (ed.) Lambda-Calculus and Computer Science Theory. LNCS, vol. 37, p. 369. Springer, Heidelberg (1975)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Alessi, F., Barbanera, F., Dezani-Ciancaglini, M. (2004). Tailoring Filter Models. In: Berardi, S., Coppo, M., Damiani, F. (eds) Types for Proofs and Programs. TYPES 2003. Lecture Notes in Computer Science, vol 3085. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24849-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-24849-1_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22164-7
Online ISBN: 978-3-540-24849-1
eBook Packages: Springer Book Archive