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Abstract. A general technique of batch verification for equality of
discrete logarithms is proposed. Examples of batching threshold decryp-
tion schemes are presented based on threshold versions of ElGamal and
RSA cryptosystems. Our technique offers large computational savings
when employed in schemes with a large number of ciphertexts to be
decrypted, such as in e-voting or e-auction schemes using threshold
decryption. The resulting effect is beneficial for producing more efficient
schemes.
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1 Introduction

Threshold decryption [14,18,11] is essential in fault-tolerant schemes, whether
it is e-commerce (e.g: e-auction) or e-government (e.g: e-voting). In a threshold
decryption protocol, the public (encryption) key is published, while the corre-
sponding private (decryption) key is shared among n participants. A threshold
t < n is set, such that more than t participants are required to cooperate to
decrypt a ciphertext while the cooperation of no more than t participants will
find no information about the decryption key. In e-auction, these participants
are auctioneers sharing the power to open the bids. In e-voting, the participants
are counting authorities sharing the power to tally the votes.

To ensure correctness, it is necessary to guarantee that the shared decryp-
tion is performed correctly through some public verification functions, without
revealing the encrypted message, the private key, and its shares. In many popular
cryptosystems, the verification process is implemented by using zero-knowledge
proof of equality of discrete logarithms (PEQDL) [6].
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1.1 Performance Issue

Consider a secure e-auction [1,16] or e-voting scheme [2,4,8,11], where the sub-
mitted bids or ballots are required to be anonymous. After the encrypted bids
or ballots are made anonymous through the use of an anonymous channel (e.g:
mix network), they are decrypted by the decryption authorities. Each decryp-
tion share requires a proof of correct decryption. The proof is required to verify
and identify correct decryption shares to reconstruct the original bid or vote.
Verification of many instances of such proofs leads to costly computation which
can further develop into a bottleneck affecting the performance of the scheme.

Batching is a useful technique to decrease computational cost in processing
the proofs of correct decryption together. Bellare et al. [3] proposed three batch
verification techniques - RS (random subset) test, SE (small exponent) test, and
Bucket test. However, their scheme is not applicable to our threshold decryp-
tions verification problem for two reasons. Firstly, their techniques batch the
verification of common base exponentiations, not the verification of PEQDLs
(i.e: common exponent). Secondly, Boyd and Pavlovski [5] demonstrated that
although the theorems in [3] are correct, their application in the paper is inap-
propriate since the assumptions on the group structure are not strong enough.
Hoshino et al. [12] later fixed and extended Bellare’s work to batch verify expo-
nentiations in multiple bases. However, this is also irrelevant to our problem of
batch verifying PEQDLs with a common exponent.

1.2 Main Contributions

The following summarises our main contribution presented in the paper:

1. We fix the problem presented by Boyd and Pavlovski in SE test, and also
extend the test to batch verify PEQDLs.

2. We present and formally prove theorems on the extended test.
3. We present applications of the theorems to verify valid decryption shares in

threshold versions of two popular cryptosystems - threshold ElGamal, and
threshold RSA.

Our result improves computational efficiency of verifying valid decryption shares
in threshold decryption. As threshold decryption is fundamental in various appli-
cations (e.g: e-auction, e-voting, e-cash) to provide robustness, our result offers
improvement in efficiency, performance and practicality when integrated with
many schemes.

The remainder of this paper is structured as follows. Section 2 offers an in-
troduction to threshold decryption. Section 3 presents two theorems and their
corresponding proofs essential to our result. In section 4, the theorems are ap-
plied to threshold versions of the two popular cryptosystems. Sections 5 and 6
analyse the security and efficiency of our applied batch verification. Section 7 is
a conclusion.
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2 Background

In this section we recall decryption of a single ciphertext in threshold decryption
schemes for simplicity. Note that many schemes require decryption of many
ciphertexts in threshold decryption.

2.1 Threshold Decryption

In a threshold decryption scheme, a secret s is encrypted using some public-
key encryption algorithm as c = E(s). The private decryption key d is shared by
using Shamir’s (t, n) secret sharing scheme [17] among n participants (decrypting
authorities) Pi, for i ∈ {1, . . . , n}. Each Pi holds a di, a share of d. The ciphertext
c is partially decrypted by each Pi as zi = Ddi(c), and later reconstructed using
the decryption shares from the set S containing at least t+1 honest participants
by Lagrange interpolation.

A verification function V (c, zi, vi) is used to determine honest participants.
Normally the verification key vi of participant Pi contains a commitment to di.

Threshold decryption is often employed in many crypto-based applications.
The two most commonly used are threshold versions of ElGamal and RSA al-
gorithms. E-auction and e-voting schemes employing them include [11,2,4,8,1,
16].

2.2 Threshold ElGamal

Pedersen [14] presented a threshold ElGamal signature scheme. It is straight-
forward to adjust the scheme into a threshold decryption protocol. We recall the
protocol as follows:

1. Key generation and sharing:
Randomly select a large prime q, such that p = 2q +1 is also a prime. G is a
cyclic subgroup in Z

∗
p of order q with a generator g. The private decryption

key is d ∈ Zq, while g and e = gd is the public encryption key. Using Shamir’s
secret sharing scheme, let f(x) =

∑t
r=0 arx

r, where a0 = d, and the rest of
ar are random values. For i ∈ {1, . . . , n}, distribute the secret share di = f(i)
to n participants {Pi}, and each Pi computes the verification key vi = gdi .
The parameters p, q, g, e and vi are made public, while d and di are kept
secret for i ∈ {1, . . . , n}.

2. Encryption:
Select a random r ∈ Zq and encrypt a secret message s ∈ Z

∗
p as a pair (α, β),

where α = gr and β = ser.
3. Shared decryption:

Each participant Pi computes the decryption share zi = αdi and proves the
knowledge of the secret share di using non-interactive zero-knowledge that:

logg(vi) = logα(zi) (1)

Since q is public, g and α can be publicly verified to be generators of G.
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4. Shares combining:
Correct decryption share zi of Pi is verified as Pi proves the knowledge of
di shown in the previous step. S is the set of more than t + 1 participants
providing correct shares. The original message is reconstructed by computing
s = β∏

i∈S z
µi
i

, where µi =
∏

i′∈S,i′ �=i
i′

i′−i .

2.3 Threshold RSA

Shoup [18] presented a threshold version of RSA signature scheme, which can be
adjusted to a threshold decryption scheme as shown by Fouque et al. [11]. We
recall the scheme as follows:

1. Key generation and sharing:
Randomly select primes p′ and q′, such that p = 2p′ + 1 and q = 2q′ + 1 are
strong primes. Set N = pq and M = p′q′. Select a prime e > n and compute
d, such that ed = 1 mod N . The public encryption key is PK = (N, e),
while d is the private decryption key. Using Shamir’s secret sharing scheme,
let f(x) =

∑t
r=0 arx

r mod M , where a0 = d and random values for rest
of ar ∈ {0, . . . , N ∗M − 1}. For i ∈ {1, . . . , n}, distribute the secret share
di = f(i) to n participants Pi. Randomly select a verification base v in
the cyclic group of squares in Z

∗
N . Each participant Pi then computes the

verification key vi = vdi mod N . The parameters N, e, v and vi are made
public, while M, p, q, p′, q′, d and di are kept secret, for i ∈ {1, . . . , n}.

2. Encryption:
Encrypt a secret message s as c = se mod N .

3. Shared decryption:
Each participant Pi computes the decryption share zi = c2∆di , where ∆ = n!
and proves the knowledge of the secret share di using non-interactive zero-
knowledge that:

logv(vi) = logc4∆(z2
i ) (2)

Notice that as v and c4∆ are squares, Shoup argues that they are of order M

with a large probability (accurately: 1− p′+q′−1
pq ). Thus, the proof is assumed

to be PEQDL in a group with a known order.
4. Shares combining:

Correct decryption share zi of Pi is verified as Pi proves the knowledge of
di shown in the previous step. S is the set of more than t + 1 participants
providing correct shares. The original message is obtained by first calculat-
ing s4∆2

=
∏

i∈S z2∆µi

i mod N , where µi =
∏

i′∈S,i′ �=i
i′

i′−i . Since e > n is
relatively prime to 4∆2, extended Euclidean algorithm can be applied to
obtain a and b, such that a× 4∆2 + b× e = 1. Therefore, s is reconstructed
as s = sa4∆2

sbe = (s4∆2
)acb mod N .

As in the original scheme [18,11], parameters in the key generation and shar-
ing stage are generated by a trusted dealer. The random verification base v is
trusted to be in the cyclic subgroup of squares in Z

∗
N . Therefore, v and vi are
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squares in the group of Z
∗
N2 . As a result, when verification of Equation 2 is

performed to check the validity of the decryption share, it is guaranteed to be
PEQDL in the same cyclic group with a large probability.

3 Batch Verification for Equality of Logarithms

In many cryptographic applications as mentioned in the previous sections, nor-
mally there are many ciphertexts (cj) to be processed in threshold decryption.
This is illustrated in Figure 1. For m encrypted messages to be decrypted by n
authorities, one requires m× n instances of PEQDL verifications of decryption
share zi,j (participant i’s decryption share from ciphertext cj). Verification of
correct shared decryption for every share zi,j is the greatest factor contributing
to computational cost in a threshold decryption scheme.

P1 P2 Pi Pn

c1 −→ z1,1 z2,1 · · · zi,1 · · · zn,1 −→ s1

c2 −→ z1,2 z2,2 · · · zi,2 · · · zn,2 −→ s2

...
...

...
...

...
...

cj −→ z1,j z2,j · · · zi,j · · · zn,j −→ sj

...
...

...
...

...
...

cm −→ z1,m z2,m · · · zi,m · · · zn,m −→ sm

Fig. 1. Threshold decryption of n participants {Pi}, m ciphertexts {cj}, mn decryption
shares {zi,j}, recovering m secret messages {sj}

Techniques presented in [3], [5] and [12] only address batch verification for
modular exponentiation. However, tests in [3] can be modified and extended to
batch verify PEQDL. Hence, the efficiency of the threshold decryption scheme,
as discussed in the previous paragraph, can be greatly improved.

This section presents two theorems on the modified SE test to batch verify
PEQDL, i.e: verifying common exponent. Batching verification of common base
is also briefly discussed. In Section 4, the theorems are used as a foundation to
the applications proposed.

RS test randomly selects subsets of the instances to be verified in avoiding
“bad pairs”. This test is not sufficiently efficient, and thus is not discussed in this
paper. SE test introduces random small exponents on the instances, such that
an attacker needs to guess the random values to produce an accepted incorrect
batch. This test is more suitable for our purpose and we modify this test on
batch verification for PEQDL. Bucket test forms groups of the instances to be
batched, and performs random SE tests on them. Our SE test can be extended
naturally to Bucket test for batch verifying PEQDL. However, the extension of
SE test to Bucket test for batch verifying PEQDL is omitted for simplicity. In
the theorems below, we batch the verification of j instances of PEQDL on one
participant (i = 1), and omit the subscript i.
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3.1 Batching PEQDL within the Same Cyclic Group

Theorem 1 provides the foundation for batching PEQDL within the same cyclic
group.

Theorem 1. For j ∈ {1, . . . , m}, G is a cyclic group with q as the small-
est factor of ord(G), generators g and cj, and a security parameter l, where
2l < q. The small exponents tj are random l-bit strings, and y, zj ∈ G. If
∃k ∈ {1, . . . , m} ∧ logg y �= logck

zk, then logg y �= log∏m
j=1 c

tj
j

∏m
j=1 z

tj

j with a

probability (taken over choice of tj) of no less than 1− 2−l.

To prove Theorem 1, we first prove the following lemma:

Lemma 1. If ∃k ∈ {1, . . . , m} ∧ logg y �= logck
zk, given a definite set S =

{tj |tj < 2l ∧ j ∈ {1, . . . , k − 1, k + 1, . . . , m}}, then there is only at most one tk
satisfying logg y = log∏m

j=1 c
tj
j

∏m
j=1 z

tj

j , where j ∈ {1, . . . , m}.

Proof (Lemma 1). If the lemma is incorrect, the following two equations are
satisfied simultaneously where logg y �= logck

zk and tk �= t′k.

logg y = log∏m
j=1 c

tj
j

m∏

j=1

z
tj

j

logg y = log
(
∏k−1

j=1 c
tj
j )(c

t′
k

k )(
∏m

j=k+1 c
tj
j )

(
k−1∏

j=1

z
tj

j )(zt′
k

k )(
m∏

j=k+1

z
tj

j )

Suppose y = gx, we re-write the two previous equations as:

(
m∏

j=1

c
tj

j )x =
m∏

j=1

z
tj

j

((
k−1∏

j=1

c
tj

j )(ct′
k

k )(
m∏

j=k+1

c
tj

j ))x = (
k−1∏

j=1

z
tj

j )(zt′
k

k )(
m∏

j=k+1

z
tj

j )

Without losing generality, suppose t′k > tk, we can simplify the previous two
equations to be c

x(t′
k−tk)

k = z
t′
k−tk

k , or ( cx
k

zk
)t′

k−tk = 1. As cx
k

zk
∈ G, t′k − tk is a

factor of ord(G) if cx
k

zk
�= 1. Since 0 < t′k − tk < q, therefore, cx

k

zk
= 1 or cx

k = zk.
This is contradictory to the assumption of logg y �= logck

zk. ��

Proof (Theorem 1). Lemma 1 means that among the (2l)m possible combina-
tions of tj for j ∈ {1, . . . , m}, at most (2l)m−1 of them can satisfy logg y =
log∏m

j=1 c
tj
j

∏m
j=1 z

tj

j when logg y �= logcj
zj . Therefore, given a random tj for

j ∈ {1, . . . , m}, if logg y �= logcj
zj , then logg y = log∏m

j=1 c
tj
j

∏m
j=1 z

tj

j is accepted

with a probability of no more than 2−l. ��
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3.2 Batching PEQDL in Different Cyclic Subgroup of Z
∗
p

In Theorem 1, there is a condition that g, y, cj , zj ∈ G for j ∈ {1, . . . , m}. How-
ever, in some applications there is uncertainty of satisfaction on this condition,
and additional computation is often required to verify the condition. This is a
problem ignored by Bellare et al. [3]. In reality, this extra computation is too
expensive so that in many cases it prevents the applicability of Theorem 1.

To overcome this problem, Theorem 2 is proposed. This theorem does not
require the pre-condition that the LHS and RHS of the batching equation be in
the same cyclic subgroup of Z

∗
p.

Theorem 2. Suppose p and q are large primes, such that p = 2q+1. G, of order
q and generator g, is a cyclic multiplicative subgroup in Z

∗
p. For j = 1, . . . , m

and x ∈R Z
∗
q , y = gx, zj ∈ Z

∗
p, l is a security parameter satisfying 2l < q

and tj ∈R {1, . . . , 2l}. If ∃k ∈ {1, . . . , m} ∧ logg y �= logck
±zk mod p, then

logg y �= log∏m
j=1 c

tj
j

∏m
j=1 z

tj

j with a probability of no less than 1− 2−l.

Due to space restrictions and similarity of Theorem 2 and Theorem 1, we
defer the proof for Theorem 2 to the full version of the paper.

3.3 Screening

For m ciphertexts processed in threshold decryption, the previous two theorems
are suited to batch each verification of valid decryption shares produced by one
participant Pi. Thus, if the batch verification fails, we can identify that particular
participant to be dishonest. This is examined in detail in Section 4 and Section 5.

In this subsection, we briefly explain another type of batch verifying valid de-
cryption shares using a common base (same ciphertexts, different participants).
If there is only one message in the threshold decryption process (m = 1), we
can slightly modify the two theorems above to verify valid decryption shares
produced by all the participants {Pi} together as:

logg(
n∏

i=1

yti
i ) ?= logc(

n∏

i=1

zti
i )

We call this technique ‘screening’ because it can only detect invalid decryp-
tion share(s), but is unable to identify the dishonest participant(s). However,
divide and conquer, cut and choose, or binary search method [13] can be applied
for identifying the bad decryption share(s), thus identifying the dishonest partic-
ipant(s). Note that this technique only offers considerable performance increase
if used in identifying dishonest participants in a large group (i.e: n is large).

4 Applications in Threshold Decryption

In this section, we present the application of our batching theorems (Section 3)
to batch verify threshold versions of two popular cryptosystems - threshold El-
Gamal and RSA. We apply Theorem 2 to batch verify threshold ElGamal, and
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Theorem 1 to batch verify threshold RSA. The protocols presented in this section
are based on Chaum-Pedersen [6] with a slight modification where the verifier
randomly selects the small exponents on the first step.

4.1 Batch Verification in ElGamal

Theorem 2 is suitable to batch verify threshold ElGamal as:

1. For threshold version of ElGamal, the group G is the subgroup of Z
∗
p with

an order q.
2. For i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, vi ∈ Z

∗
p and zi,j ∈ Z

∗
p can easily be

checked by testing whether 0 < vi, zi,j < p.

3. The values g ∈ G and αj ∈ G are publicly verifiable by testing
(

g
p

)
= 1 and

(
αj

p

)
= 1 (using the Legendre symbol as in [12]). This proves g and αj to

be generators of G, if g �= 1.
4. For i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, ti,j can be chosen randomly while still

satisfying ti,j < 2l < q.

According to Theorem 2, verification of PEQDL in threshold ElGamal (Equa-
tion 1) can be batched using SE test as:

logg(vi) = log∏m
j=1 α

ti,j
j

(
m∏

j=1

z
ti,j

i,j ) (3)

To verify: logg(vi) = logαj
(zi,j), for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Pi Verifier

ti,j ∈R {1, . . . , 2l}
ti,j←−−−−−

ri ∈R Zq

γi,1 = gri mod p

γi,2 = (
∏m

j=1 α
ti,j

j )ri mod p
γi,1,γi,2−−−−−→

ui ∈R Zq
ui←−−−−−

wi = ri − uidi mod q
wi−−−−−→

γi,1 = gwivui
i mod p

γi,2 = (
∏m

j=1 α
ti,j

j )wi

(
∏m

j=1(zi,j)ti,j )ui mod p

Fig. 2. Batch verification of valid decryption shares for threshold version of ElGamal
cryptosystem.
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Interactive batch verification protocol for threshold version of ElGamal is
shown in Figure 2. Using a hash function and employing the well-known Fiat-
Shamir heuristic [10], the protocol can be made non-interactive by producing the
challenge ui using a collision-resistant hash function H, where H : (0, 1)∗ → Zq

and j ∈ {1, . . . , m}, as follows:

ui = H(γi,1, γi,2, g, vi, αj , zi,j)

Producing the small exponents non-interactively requires a different scenario
further explained in Section 5.2. We slightly extend the coin-flipping protocol
for the participants to provide a shared source of randomness. This is required
in order to prevent a prover from cheating by trying multiple zi,j values until
a suitable ti,j value is found. The random values provided are then used to
compute the small exponents using a collision-resistant hash function. These are
conducted during the shared decryption stage. The protocol to produce the small
exponents is shown in Figure 3 and is detailed as below.

1. Each participant (prover) Pi selects a random value τi, commits to it using a
suitable commitment function, e.g: a hash function as H(τi), and publishes
the commitment.

2. Each participant Pi then produces and publishes their decryption share as
zi,j = αdi

j .
3. The random value τi selected in the first step is then revealed by publishing

it.
4. The random small exponents are then calculated using a collision-resistant

hash function as: tj = H(τi, αj , j), where i = {1, . . . , n} and j ∈ {1, . . . , m}.

P1 P2 · · · Pn

↓ ↓ ↓
H(τ1) H(τ2) · · · H(τn)

↓ ↓ ↓
z1,j z2,j · · · zn,j

↓ ↓ ↓
t1 t2 · · · tn

tj = H(τ1, τ2, . . . , τn, αj , j) mod 2l

Fig. 3. Producing the small exponents non-interactively

Note that the use of digital signature on the published values is required to
authenticate them. Non-interactively, each prover uses the same small exponents
tj as opposed to using different ti,j values provided by the verifier for each prover
in the interactive version.

The prover then publishes (γi,1, γi,2, wi) for public verification. The verifica-
tion process can be conducted publicly by calculating the small exponents and
challenge as above, and checking:
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To verify: logv(vi) = logc4∆
j

(z2
i,j), for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}.

Pi Verifier

ti,j ∈R {1, . . . , 2l}
ti,j←−−−−−

ri ∈R ZN

γi,1 = vri mod N
γi,2 = (

∏m
j=1(c

4∆
j )ti,j )ri mod N

γi,1,γi,2−−−−−→
ui ∈R [0, A)

ui←−−−−−
wi = ri − uidi

wi−−−−−→
γi,1 = vwivui

i mod N
γi,2 = (

∏m
j=1(c

4∆
j )ti,j )wi

(
∏m

j=1(z
2
i,j)

ti,j )ui mod N

Fig. 4. Batch verification of valid decryption shares for threshold version of RSA cryp-
tosystem.

γi,1 = gwivui
i mod N

γi,2 = (
m∏

j=1

(αtj )wi(
m∏

j=1

(zi,j)tj )ui mod N

If all these are satisfied, the verification is accepted. Otherwise, it fails.
We are only convinced that if there exists k where 1 ≤ k ≤ m and logg(v2

i ) =
logαj

(z2
i,j), the batch verification can only be passed with negligible probability.

Namely, unless zi,j = ±αdi
j , the batch verification will always fail. Thus, our

batch verification result is not yet satisfactory as sj = −αdi
j may also satisfy

our batch verification. This will lead to incorrect decryption. To fix this, the
decryption requires one extra step, i.e: multiplying sj with (−1) when sj /∈ G.
After sj is recovered through the threshold decryption procedure, we test if(

sj

p

)
= 1 (using the Legendre symbol). If it is accepted, sj ∈ G. Otherwise,

sj = −sj mod p. Then the original secret message is recovered as βj

sj
mod p. The

additional cost is only one exponentiation.

4.2 Batch Verification in RSA

Theorem 1 is applicable to batch the verification of RSA threshold decryption
shares as:

1. For threshold version of RSA cryptosystem, G is the cyclic group containing
all the squares in Z

∗
N with order M = p′q′, the smallest factor of which is

min(p′, q′).
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2. The value v is trusted to be a generator of squares in Z
∗
N . As vi is produced

using v, and z2
i,j are squares that can be generated by the verifier, thus

vi, z
2
i,j ∈ G (cyclic subgroup of squares in Z

∗
N ).

3. The value of c4∆
j is a square, and v is trusted to be squares in Z

∗
N chosen

by the trusted dealer. Therefore, both c4∆
j , v ∈ G. Thus, c4∆

j and v are
generators of G (see [18]) with a very large probability (1− p′+q′−1

p′q′ ).
4. For i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, ti,j can be chosen randomly while still

satisfying ti,j < 2l < min(p′, q′).

According to Theorem 1, SE test can be implemented as the following:

logv(vi) = log∏m
j=1(c

4∆
j )ti,j (

m∏

j=1

(z2
i,j)

ti,j ) (4)

Interactive batch verification for threshold version of RSA is shown in Fig-
ure 4. Where A×ord(G) is much smaller than N , the challenge ui must be chosen
in [0, A) such that the shared secret key di is statistically hidden in the response
wi as in [15,2]. Analysis in [15] suggests the minimum size of the challenge |A|
to be 80 bits, and 128 bits for more secure applications.

Using a hash function and employing the well-known Fiat-Shamir heuristic,
the protocol is made non-interactive similar to the previous section. The prover
produces the small exponents as shown in the previous section (Figure 3), and
produces the challenge ui using a collision-resistant hash function H, where
H : (0, 1)∗ �→ ZM and j ∈ {1, . . . , m}, similar to the previous section as follows:

tj = H(t1, t2, . . . , tn, αj , j) mod 2l

ui = H(γi,1, γi,2, v, vi, c
4∆
j , z2

i,j)

The prover then publishes (γi,1, γi,2, wi) for public verification. The verifica-
tion process can be conducted publicly by calculating the small exponents and
challenge as above, and checking:

γi,1 = vwivui
i mod N

γi,2 = (
m∏

j=1

(c4∆
j )tj )wi(

m∏

j=1

(z2
i,j)

tj )ui mod N

If all these are satisfied, the verification is accepted. Otherwise, it fails.
Unlike in threshold ElGamal, extra verification to ensure that decryption

shares passing the batch verification are not −zi,j is not necessary. This is be-
cause decryption shares zi,j are explicitly squared in the share combining phase
to reconstruct the secret message.

5 Security Analysis

5.1 Completeness

Completeness of each of the two protocols in Section 4 is straight-forward. This
is because if the batch verification equations in the two protocols are correct,
they output positive results.
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5.2 Soundness

The two protocols in Section 4 are very similar. They are based on Chaum-
Pedersen’s protocol. We slightly modify the protocol where the verifier randomly
selects the small exponents at the beginning of the protocol run. The proof of
soundness for the protocols follows from Chaum-Pedersen’s scheme as they are
essentially the same. The small exponents ti,j are chosen randomly in a very
similar manner (ti,j < 2l) to choosing the random challenge.

Given the same random small exponents and commitments, no matter which
challenge is chosen, the prover reveals no other information than the fact that
the discrete logarithms of the verification key to the base of verification base
equals the discrete logarithms of the product of the decryption shares to the
base of the product of the ciphertexts (Equation 3 and 4).

In the interactive version, the probability for a prover to cheat is negligible.
It is not feasible to forge the decryption shares where the verification is accepted
without the knowledge of the share decryption key. Also, where the prover indeed
holds the decryption key share, the probability of producing bad decryption
shares where the verification is accepted is also negligible. This is because the
small exponents and challenge are chosen randomly by the verifier. For example,
in batching the verification of correct ElGamal decryption shares, the probability
of a prover guessing a correct random small exponent and challenge, and the
verification is accepted is 2−lq−1.

In the non-interactive version, we also follow Chaum-Pedersen’s protocol with
a slight addition in choosing the random small exponents (Figure 3) based on the
coin-flipping protocol. We avoid the use of a hash function with the input (the
decryption share zi,j) chosen by a single prover to compute the small exponents.
This is because it might be possible for a dishonest participant to try fixing the
decryption share(s) and produce the small exponents, such that the verification
is accepted and the share combining fails. A distributed source of randomness
(based on the coin-flipping protocol) is required as the small exponents are only
of length l, where l is small.

The probability of a prover forging his decryption share and fixing the small
exponent share is negligible. This is because the prover is required to commit
to the random share first before publishing his decryption share, and the small
exponents are produced by hashing the combined random shares (common ref-
erence string) of all the participants. As a collision-resistant hash function is
used to produce the small exponents, a prover can only attempt to forge his
decryption share if all the participants collude.

The rest of the protocol is a Σ-protocol [7], and thus has a special soundness
property as proven in [7]. The proof of soundness for the batching operation has
been proven in Section 3.1 and Section 3.2.

5.3 Error Probability

In any of the two batch verification protocols presented, the probability that a
dishonest participant is discovered is overwhelmingly large as the following:
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– As indicated by Theorem 1, the probability that the batch verification equa-
tion is satisfied given incorrect share decryption(s) is 2−l.

– As the prover has to guess the challenge ui at random, the probability that
the batch verification test is accepted where the batch verification equation
is not satisfied is 1

q .
– Therefore, the probability that the batch verification is not accepted given

incorrect share decryption is (1− 2l)(1− q−1)

As q−1 is very small, e.g: 2−1024, the probability that a dishonest participant
being undetected given incorrect share decryption(s) is approximately 2−l.

6 Efficiency Analysis

Most schemes employing threshold decryption take the decryption process for
granted. For example, in the mixnet scheme by Boneh and Golle [4], they focus
on improving the efficiency of correct mixing operation and only mention the use
of threshold decryption. Using our result, the overall performance of the mixnet
scheme can be greatly improved.

We follow Bellare et al. in measuring the cost of our algorithms, where
ExpCostm(l) denotes the time to compute m exponentiations in a common base
with different exponents of the same length l. The computational cost com-
parison of naive verification against interactive batch verification for threshold
versions of two popular cryptosystems - ElGamal and RSA - is summarised in
Table 1 in terms of the number of modular multiplications required.

Suppose ExpCost(x) = 1.5x and ExpCosty(x) = y + 0.5xy. Table 1 also
illustrates an example of verifying valid decryption shares from 50 (m = 50)
ciphertexts for 10 participants (n = 10, log2 ∆ ≈ 22), where the length of the
integers involved is 1024 bits and the acceptable error is 2−20 (l = 20). Imple-
mented in the mixnet of Boneh and Golle, our result offers a great reduction of
the computational cost in the threshold decryption phase of the shuffled cipher-
texts to be decrypted in the final phase of mixnet.

The performance increase in Table 1 is calculated based on the difference
of modular multiplication required in the naive and batch version. According
to Table 1, it is estimated that performance increase when batch verification is
employed would be about 97%.

Our results offer better proving and verification performance, while the prob-
ability of an invalid decryption share being accepted is no more than 2−l. When
m increases, the computational verification cost saved by using our scheme also
increases.

7 Conclusion

The SE test by Bellare et al. is originally designed to batch verify modular ex-
ponentiations in the context of signature verification. We modified and extended
the scheme to batch verify PEQDL in the context of threshold decryption.
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Table 1. Performance (number of modular multiplications required) comparison on
interactive batch verification of valid decryption shares for threshold versions of two
popular cryptosystems, with 10 participants (decrypting authorities, n = 10), 50 secret
messages to process (m = 50), and 2−20 acceptable error (l = 20).

Naive Batch
ElGamal Each prover m(2ExpCost(log2 q) + 1) ExpCostm(log2 l)

+2ExpCost(log2 q) + 1
= 153650 = 3623 (97.64% more efficient)

Verifier 2nmExpCost2(log2 q) n(2ExpCostm(log2 l)
+2ExpCost2(log2 q))

= 1026000 = 31520 (96.93% more efficient)
RSA Each prover m(2ExpCost(log2 M) + 1) ExpCostm(log2 ∆ + log2 l + 2)

+2ExpCost(log2 M) + m + 2
= 153650 = 4274 (97.22% more efficient)

Verifier 2nmExpCost2(log2 M) n(2ExpCostm(log2 ∆ + log2 l + 2)
+2ExpCost2(log2 M))

= 1026000 = 43520 (95.76% more efficient)

The scheme presented in this paper greatly improves the efficiency of identify-
ing correct decryption shares (honest participants) with an overwhelmingly high
probability when a large number of ciphertexts are involved. The bucket test by
Bellare et al. (a variant of SE test) can similarly be modified and extended to
achieve better efficiency.

It is quite straight-forward to apply the scheme to batch verify decryption
shares in threshold version of Paillier cryptosystem [9], similar to that of thresh-
old version of RSA. Due to space constraints, we provide the application in the
full version of this paper.

Our scheme can easily be implemented in cryptographic applications em-
ploying threshold decryption in lowering their computational cost. This offers
great performance benefit to various applications requiring verification of many
PEQDLs, such as in secure e-auction or e-voting schemes.
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