Skip to main content

Central Point Crossover for Neuro-genetic Hybrids

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

Abstract

In this paper, we consider each neural network as a point in a multi-dimensional problem space and suggest a crossover that locates the central point of a number of neural networks. By this, genetic algorithms can spend more time around attractive areas. We also apply representational normalization to neural networks to maintain genotype consistency in crossover. For the normalization, we utilize the Hungarian method of matching problems. The experimental results of our neuro-genetic algorithm overall showed better performance over the traditional multi-start heuristic and the genetic algorithm with a traditional crossover. These results are evidence that it is attractive to exploit central areas of local optima.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belew, R.K., McInerney, J., Schraudolph, N.N.: Evolving networks: Using the genetic algorithm with connectionist learning. In: Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, pp. 511–547. Addison- Wesley, Redwood City (1992)

    Google Scholar 

  2. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

  3. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters 15, 101–113 (1994)

    Article  MathSciNet  Google Scholar 

  4. Bui, T.N., Moon, B.R.: A new genetic approach for the traveling salesman problem. In: IEEE Conference on Evolutionary Computation, pp. 7–12 (1994)

    Google Scholar 

  5. Chalmers, D.J.: The evolution of learning: An experiment in genetic connectionism. In: Proceedings of the 1990 Connectionist Models Summer School, pp. 81–90 (1990)

    Google Scholar 

  6. Choi, S.S., Moon, B.R.: Normalization in genetic algorithms. In: Genetic and Evolutionary Computation Conference, pp. 862–873 (2003)

    Google Scholar 

  7. Crosher, D.: The artificial evolution of a generalized class of adaptive processes. In: Preprints of AI 1993 Workshop on Evolutionary Computation, pp. 18–36 (1993)

    Google Scholar 

  8. Gale, D.: The Theory of Linear Economic Models. McGraw-Hill Book Company, Inc, New York (1960)

    Google Scholar 

  9. Hancock, P.J.B.: Genetic algorithms and permutation problems: a comparison of recombination operators for neural net structure specification. In: Proc. Int. Workshop Combinations of Genetic Algorithms and Neural Networks, pp. 108–122 (1992)

    Google Scholar 

  10. Haykin, S.: Neural Networks, A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  11. James, A., David, M.: Neural Networks, Algorithms, Applications, and Programming Techniques. Addison-Wesley, Reading (1994)

    Google Scholar 

  12. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. To appear in Sixth International Conference on Genetic Algorithms (1995)

    Google Scholar 

  13. Kauffman, S.: Adaptation on rugged fitness landscapes. Lectures in the Science of Complexity, 527–618 (1989)

    Google Scholar 

  14. Kim, H.B., Jung, S.H., Kim, T.G., Park, K.H.: Fast learning method for backpropagation neural network by evolutionary adaptation of learning rates. Neurocomputating

    Google Scholar 

  15. Kim, Y.H., Moon, B.R.: Investigation of the fitness landscapes and multi-parent crossover for graph bipartitioning. In: Genetic and Evolutionary Computation Conference, pp. 1123–1134 (2003)

    Google Scholar 

  16. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network. In: IEEE Int. Joint Conf. Neural Networks, pp. 71–76 (1991)

    Google Scholar 

  17. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Naval Res. Logist. Quart. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  18. Lin, C.T., Jou, C.P.: Controlling chaos by GA-based reinforcement learning neural network. IEEE Trans. on Neural Networks 10(4), 846–869 (1999)

    Article  Google Scholar 

  19. Liu, Y., Yao, X.: Evolutionary design of artificial neural networks with different nodes. In: IEEE Conference on Evolutionary Computation, pp. 670–675 (1996)

    Google Scholar 

  20. Manderick, B.,, M.: deWeger, and P. Spiessens. The genetic algorithm and the structure of the fitness landscape. In: International Conference on Genetic Algorithms, pp. 143–150 (1991)

    Google Scholar 

  21. Mangasarian, O.L., Wolberg, W.H.: Cancer diagnosis via linear programming. SIAM News 23(5), 1–18 (1990)

    Google Scholar 

  22. Michalewicz, Z.: Genetic Algorithms + Data Structure = Evolution Programs. Springer, Berlin (1992)

    Google Scholar 

  23. Montana, D., Davis, L.: Training feedforward neural network using genetic algorithms. In: 11th International Joint Conference on Artificial Intelligence, pp. 762–767 (1989)

    Google Scholar 

  24. Petridis, V., Paterakis, E., Kehagias, A.: A hybrid neural-genetic multimodel parameter estimation algorithm. IEEE Trans. on Neural Networks 9(5), 862–876 (1998)

    Article  Google Scholar 

  25. Pujol, J., Poli, R.: Evolving neural networks using a dual representation with a combined crossover operator. In: IEEE Conference on Evolutionary Computation, pp. 416–421 (1998)

    Google Scholar 

  26. Radcliffe, N.J.: Forma analysis and random respectful recombination. In: International Conference on Genetic Algorithms, pp. 222–229 (1991)

    Google Scholar 

  27. Sexton, R.S., Dorsey, R.E., Johnson, J.D.: Toward global optimization of neural networks: A comparison of the genetic algorithm and backpropagation. Decision Support Systems 22(2), 171–185 (1998)

    Article  Google Scholar 

  28. Sorkin, G.B.: Efficient simulated annealing on fractal landscapes. Algorithmica 6, 367–418 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  29. Thierens, D.: Non-redundant genetic coding of neural networks. In: IEEE Conference on Evolutionary Computation, pp. 571–575 (1996)

    Google Scholar 

  30. Weinberger, E.D.: Fourier and Taylor series on fitness landscapes. Biological Cybernetics 65, 321–330 (1991)

    Article  MATH  Google Scholar 

  31. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks: Optimizing connections and connectivity. Parallel Computing 14(3), 347–361 (1990)

    Article  Google Scholar 

  32. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jung, S., Moon, BR. (2004). Central Point Crossover for Neuro-genetic Hybrids. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics