Skip to main content

Combining a Memetic Algorithm with Integer Programming to Solve the Prize-Collecting Steiner Tree Problem

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

  • 1903 Accesses

Abstract

The prize-collecting Steiner tree problem on a graph with edge costs and vertex profits asks for a subtree minimizing the sum of the total cost of all edges in the subtree plus the total profit of all vertices not contained in the subtree. For this well-known problem we develop a new algorithmic framework consisting of three main parts:

(1) An extensive preprocessing phase reduces the given graph without changing the structure of the optimal solution. (2) The central part of our approach is a memetic algorithm (MA) based on a steady-state evolutionary algorithm and an exact subroutine for the problem on trees. (3) The solution population of the memetic algorithm provides an excellent starting point for post-optimization by solving a relaxation of an integer linear programming (ILP) model constructed from a model for finding the minimum Steiner arborescence in a directed graph.

Extensive experiments on benchmark instances from the literature show that our combination of an MA with ILP-based post-optimization compares favorably with previously published results. While our solution values are almost always the same (not surprisingly, since an extension of our ILP approach shows the optimality of these values), we obtain a significant reduction of running time for medium and large instances.

Partly supported by the Doctoral Scholarship Program of the Austrian Academy of Sciences (DOC) and by the Austrian Science Fund (FWF), grant P16263-N04.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.: A note on the prize collecting traveling salesman problem. Math. Prog. 59, 413–420 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Duin, C.W., Volgenant, A.: Some generalizations of the Steiner problem in graphs. Networks 17(2), 353–364 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Engevall, S., Göthe-Lundgren, M., Värbrand, P.: A strong lower bound for the node weighted Steiner tree problem. Networks 31(1), 11–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fischetti, M.: Facets of two Steiner arborescence polyhedra. Mathematical Programming 51, 401–419 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Goemans, M.X., Williamson, D.P.: The primal-dual method for approximation algorithms and its application to network design problems. In: Hochbaum, D.S. (ed.) Approximation algorithms for NP-hard problems, pp. 144–191. P. W. S. Publishing Co. (1996)

    Google Scholar 

  7. Goemans, M.X.: The Steiner tree polytope and related polyhedra. Mathematical Programming 63, 157–182 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Johnson, D.S., Minkoff, M., Phillips, S.: The prize-collecting Steiner tree problem: Theory and practice. In: Proceedings of 11th ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, pp. 760–769 (2000)

    Google Scholar 

  9. Klau, G., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Weiskircher, R.: A new lower bounding procedure for the prize-collecting Steiner tree problem. Technical Report TR-186-1-04-01, Vienna University of Technology (2004)

    Google Scholar 

  10. Klau, G.W., Ljubić, I., Mutzel, P., Pferschy, U., Weiskircher, R.: The fractional prize-collecting steiner tree problem on trees. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 691–702. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Lucena, A., Resende, M.: Strong lower bounds for the prize-collecting Steiner problem in graphs. Technical Report 00.3.1, AT&T Labs Research (2000)

    Google Scholar 

  12. Mehlhorn, K.: A faster approximation for the Steiner problem in graphs. Information. Processing Letters 27, 125–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  13. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., et al. (eds.) New Ideas in Optimization, pp. 219–234. McGraw Hill, England (1999)

    Google Scholar 

  14. Raidl, G.R., Gottlieb, J.: On the importance of phenotypic duplicate elimination in decoder-based evolutionary algorithms. In: Brave, S., Wu, A.S. (eds.) Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Orlando, FL, pp. 204–211 (1999)

    Google Scholar 

  15. Raidl, G.R., Julstrom, B.A.: Edge-sets: An effective evolutionary coding of spanning trees. IEEE Trans. on Evolutionary Computation 7(3), 225–239 (2003)

    Article  Google Scholar 

  16. Segev, A.: The node-weighted Steiner tree problem. Networks 17, 1–17 (1987)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klau, G.W. et al. (2004). Combining a Memetic Algorithm with Integer Programming to Solve the Prize-Collecting Steiner Tree Problem. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_125

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics