Skip to main content

Inducing Sequentiality Using Grammatical Genetic Codes

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3102))

Included in the following conference series:

  • 1815 Accesses

Abstract

This paper studies the inducement of sequentiality in genetic algorithms (GAs) for uniformly-scaled problems. Sequentiality is a phenomenon in which sub-solutions converge sequentially in time in contrast to uniform convergence observed for uniformly-scaled problems. This study uses three different grammatical genetic codes to induce sequentiality. Genotypic genes in the grammatical codes are interpreted as phenotypes according to the grammar, and the grammar induces sequential interactions among phenotypic genes. The experimental results show that the grammatical codes can indeed induce sequentiality, but the GAs using them need exponential population sizes for a reliable search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In: Proceedings of the 5th International Conference on Genetic Algorithms (ICGA 1993), pp. 38–45 (1993)

    Google Scholar 

  2. Goldberg, D.E.: The race, the hurdle, and the sweet spot: Lessons from genetic algorithms for the automation of design innovation and creativity. Evolutionary Design by Computers, 105–118 (1999)

    Google Scholar 

  3. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic Algorithms. Kluwer Academic Publishers, Norwell (2002)

    MATH  Google Scholar 

  4. Harik, G.R., Goldberg, D.E.: Learning linkage. Foundations of Genetic Algorithms 4, 247–262 (1996)

    Google Scholar 

  5. Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor (1997) , Also IlliGAL Report No. 97005.

    Google Scholar 

  6. Chen, Y.P., Goldberg, D.E.: Introducing start expression genes to the linkage learning genetic algorithm. In: Proceedings of Parallel Problem Solving from Nature , vol. VII, pp. 351–360 (2002)

    Google Scholar 

  7. Chen, Y.P., Goldberg, D.E.: Convergence time for the linkage learning genetic algorithm. IlliGAL Report No. 2003025, Illinois Genetic Algorithms Lab., Univ. of Illinois, Urbana, IL (2003)

    Google Scholar 

  8. Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms using grammatical evolution. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 278–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Nicolau, M., Ryan, C.: How functional dependency adapts to salience hierarchy in the GAuGE system. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 153–163. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Ryan, C., Collins, J., O’Neill, M.: Grammatical evolution: Evolving programs for an arbitrary language. In: Proceedings of the First European Conference on Genetic Programming, pp. 83–96 (1998)

    Google Scholar 

  11. O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5, 349–358 (2001)

    Article  Google Scholar 

  12. Rothlauf, F., Goldberg, D.E.: Representations for Genetic and Evolutionary Algorithms. Physica-Verg, Heidelberg (2002)

    MATH  Google Scholar 

  13. Whitley, D., Rana, S., Heckendorn, R.: Representation issues in neighborhood search and evolutionary algorithms. In: Genetic Algorithms and Evolution Strategy in Engineering and Computer Science, pp. 39–58. John Wiley & Sons Ltd, West Sussex (1997)

    Google Scholar 

  14. Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems 3, 493–530 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Anderson, P.G.: Ordered greed. In: Proceedings of Third International ICSC Symposium on Soft Computing (1999)

    Google Scholar 

  16. Anderson, P.G.: Ordered greed, ii: Graph coloring. In: Proceedings of the Internatinal NAISO Congress on Information science innovations, ISI 2001 (2001)

    Google Scholar 

  17. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  18. Goldberg, D.E., Lingle, J. R.: Alleles, loci, and the traveling salesman problem. In: Proceedings of an International Conference on Genetic Algorithms and Their Applications, pp. 154–159 (1985)

    Google Scholar 

  19. Nicolau, M., Ryan, C.: LINKGAUGE: Tackling hard deceptive problems with a new linkage learning genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2002 (GECCO 2002), pp. 488–494 (2002)

    Google Scholar 

  20. Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. Foundations of Genetic Algorithms 2, 93–108 (1993)

    Google Scholar 

  21. Rothlauf, F.: Towards a Theory of Representations for Genetic and Evolutionary Algorithms— Development of Basic Concepts and their Application to Binary and Tree Representations. Unpublished doctoral dissertation, University of Illinois at Urbana-Champaign, Urbana, IL (2001)

    Google Scholar 

  22. Satoh, H., Yamamura, M., Kobayashi, S.: Minimal generation gap model for GAs considering both exploration and expolation. In: Proceedings of the International Conference on Fuzzy Systems, Neural Networks and Soft Computing (Iizuka 1996), pp. 494–497 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ohnishi, K., Sastry, K., Chen, YP., Goldberg, D.E. (2004). Inducing Sequentiality Using Grammatical Genetic Codes. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_135

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24854-5_135

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22344-3

  • Online ISBN: 978-3-540-24854-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics