Skip to main content

Designing Multiplicative General Parameter Filters Using Adaptive Genetic Algorithms

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

Abstract

Multiplicative general parameter (MGP) approach to finite impulse response (FIR) filtering introduces a novel way to realize cost effective adaptive filters in compact very large scale integrated circuit (VLSI) implementations used for example in mobile devices. MGP-filter structure comprises of additions and only a small number of multiplications, thus making the structure very simple. Only a couple of papers have been published on this recent innovation and, moreover, MGP-filters have never been designed using adaptive genetic algorithms (GA). The notion suggesting the use of adaptive parameters is that optimal parameters of an algorithm may change during the optimization process, and thus it is difficult to define parameters beforehand that would produce competitive solutions. In this paper, we present results of designing MGP-FIR basis filters using different types of adaptive genetic algorithms, and compare the results to the ones obtained using a simple GA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Vainio, O., Ovaska, S.J., Pöllä, M.: Adaptive filtering using multiplicative general parameters for zero-crossing detection. IEEE Transactions on Industrial Electronics 50(6), 1340–1342 (2003)

    Article  Google Scholar 

  2. Ovaska, S.J., Vainio, O.: Evolutionary programming in the design of adaptive filters for power systems harmonies reduction. IEEE International Conference on Systems, Man and Cybernetics 5, 4760–4766 (2003)

    Google Scholar 

  3. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  4. Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons, New York (1998)

    MATH  Google Scholar 

  5. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 24(4), 656–667 (1994)

    Article  Google Scholar 

  6. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1) (April 1997)

    Google Scholar 

  7. Fogel, D.B.: Evolutionary Computation, Toward a New Philosophy of Machine Learning. IEEE Press, Piscataway (2000)

    Google Scholar 

  8. Wade, G., Roberts, A., Williams, G.: Multiplier-less FIR filter design using a genetic algorithm. IEE Proceedings of Vision, Image and Signal Processing 143(3) (June 1996)

    Google Scholar 

  9. Lee, A., Ahmadi, M., Jullien, G.A., Miller, W.C., Lashkari, R.S.: Digital filter design using genetic algorithm. In: IEEE Symposium on Advances in Digital Filtering and Signal Processing, June 1998, pp. 34–38 (1998)

    Google Scholar 

  10. Vainio, O., Ovaska, S.J.: Noise reduction in zero crossing detection by predictive digital filtering. IEEE Transactions on Industrial Electronics 42(1), 58–62 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martikainen, J., Ovaska, S.J. (2004). Designing Multiplicative General Parameter Filters Using Adaptive Genetic Algorithms. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_125

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_125

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics