Abstract
Multiplicative general parameter (MGP) approach to finite impulse response (FIR) filtering introduces a novel way to realize cost effective adaptive filters in compact very large scale integrated circuit (VLSI) implementations used for example in mobile devices. MGP-filter structure comprises of additions and only a small number of multiplications, thus making the structure very simple. Only a couple of papers have been published on this recent innovation and, moreover, MGP-filters have never been designed using adaptive genetic algorithms (GA). The notion suggesting the use of adaptive parameters is that optimal parameters of an algorithm may change during the optimization process, and thus it is difficult to define parameters beforehand that would produce competitive solutions. In this paper, we present results of designing MGP-FIR basis filters using different types of adaptive genetic algorithms, and compare the results to the ones obtained using a simple GA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Vainio, O., Ovaska, S.J., Pöllä, M.: Adaptive filtering using multiplicative general parameters for zero-crossing detection. IEEE Transactions on Industrial Electronics 50(6), 1340–1342 (2003)
Ovaska, S.J., Vainio, O.: Evolutionary programming in the design of adaptive filters for power systems harmonies reduction. IEEE International Conference on Systems, Man and Cybernetics 5, 4760–4766 (2003)
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. John Wiley & Sons, New York (1998)
Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 24(4), 656–667 (1994)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1(1) (April 1997)
Fogel, D.B.: Evolutionary Computation, Toward a New Philosophy of Machine Learning. IEEE Press, Piscataway (2000)
Wade, G., Roberts, A., Williams, G.: Multiplier-less FIR filter design using a genetic algorithm. IEE Proceedings of Vision, Image and Signal Processing 143(3) (June 1996)
Lee, A., Ahmadi, M., Jullien, G.A., Miller, W.C., Lashkari, R.S.: Digital filter design using genetic algorithm. In: IEEE Symposium on Advances in Digital Filtering and Signal Processing, June 1998, pp. 34–38 (1998)
Vainio, O., Ovaska, S.J.: Noise reduction in zero crossing detection by predictive digital filtering. IEEE Transactions on Industrial Electronics 42(1), 58–62 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Martikainen, J., Ovaska, S.J. (2004). Designing Multiplicative General Parameter Filters Using Adaptive Genetic Algorithms. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_125
Download citation
DOI: https://doi.org/10.1007/978-3-540-24855-2_125
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22343-6
Online ISBN: 978-3-540-24855-2
eBook Packages: Springer Book Archive