Skip to main content

Gradient-Based Learning Updates Improve XCS Performance in Multistep Problems

  • Conference paper
Genetic and Evolutionary Computation – GECCO 2004 (GECCO 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3103))

Included in the following conference series:

  • 948 Accesses

Abstract

This paper introduces a gradient-based reward prediction update mechanism to the XCS classifier system as applied in neural-network type learning and function approximation mechanisms. A strong relation of XCS to tabular reinforcement learning and more importantly to neural-based reinforcement learning techniques is drawn. The resulting gradient-based XCS system learns more stable and reliable in previously investigated hard multistep problems. While the investigations are limited to the binary XCS classifier system, the applied gradient-based update mechanism appears also suitable for the real-valued XCS and other learning classifier systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wilson, S.W.: Get real! XCS with continuous-valued inputs. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) Learning classifier systems: From foundations to applications, pp. 209–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Bernadó, E., Llorà, X., Garrell, J.M.: XCS and GALE: A comparative study of two learning classifier systems and six other learning algorithms on classification tasks. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 115–132. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Lanzi, P.L.: Mining interesting knowledge from data with the XCS classifier system. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 958–965 (2001)

    Google Scholar 

  4. Dixon, P.W., Corne, D.W., Oates, M.J.: A preliminary investigation of modified XCS as a generic data mining tool. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2001. LNCS (LNAI), vol. 2321, pp. 133–150. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3, 149–175 (1995)

    Article  Google Scholar 

  6. Wilson, S.W.: Generalization in the XCS classifier system. In: Genetic Programming 1998: Proceedings of the Third Annual Conference, pp. 665–674 (1998)

    Google Scholar 

  7. Lanzi, P.L.: An analysis of generalization in the XCS classifier system. Evolutionary Computation 7, 125–149 (1999)

    Article  Google Scholar 

  8. Barry, A.M.: The stability of long action chains in XCS. Journal of Soft Computing 6, 183–199 (2002)

    MATH  Google Scholar 

  9. Watkins, C.J.C.H.: Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK (1989)

    Google Scholar 

  10. Wilson, S.W.: ZCS: A zeroth level classifier system. Evolutionary Computation 2, 1–18 (1994)

    Article  Google Scholar 

  11. Lanzi, P.L.: Learning classifier systems from a reinforcement learning perspective. Soft Computing: A Fusion of Foundations, Methodologies and Applications 6 (2002)

    Google Scholar 

  12. Wilson, S.W.: Function approximation with a classifier system. In: Proceedings of the Third Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 974–981 (2001)

    Google Scholar 

  13. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Baird, L.C.: Residual algorithms: Reinforcement learning with function approximation. In: Machine Learning: Proceedings of the Twelfth International Conference (1995)

    Google Scholar 

  15. Baird, L.C.: Reinforcement Learning Through Gradient Descent. PhD thesis, School of Computer Science. Carnegie Mellon University, Pittsburgh, PA 15213 (1999)

    Google Scholar 

  16. Butz, M.V., Wilson, S.W.: An algorithmic description of XCS. Soft Computing 6, 144–153 (2002)

    MATH  Google Scholar 

  17. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Gradient Descent Methods in Learning Classifier Systems. IlliGAL report 2003028, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign (2003)

    Google Scholar 

  18. Smith, R.E., Cribbs, H.B.: Is a learning classifier system a type of neural network? Evolutionary Computation 2, 19–36 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Butz, M.V., Goldberg, D.E., Lanzi, P.L. (2004). Gradient-Based Learning Updates Improve XCS Performance in Multistep Problems. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3103. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24855-2_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24855-2_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22343-6

  • Online ISBN: 978-3-540-24855-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics