Abstract
Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mereological approaches. The effectiveness of the proposed approach is performed and evaluated on artificial data sets generated by a traffic road simulator.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Barwise, J., Seligman, J. (eds.): Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)
Bazan, J.G.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 321–365. Physica-Verlag, Heidelberg (1998)
Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)
Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)
Kloesgen, W., Żytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)
Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)
Mitchell, T.: Machine Learning. McGraw-Hill, New York (1998)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Thirteenth International Joint Conference on Artificial Intelligence IJCAI, Chambéry, France, pp. 114–119. Morgan Kaufmann, San Francisco (1993)
Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50, 537–544 (2003)
Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)
Skowron, A.: Approximate reasoning by agents in distributed environments. In: Zhong, N., Liu, J., Ohsuga, S., Bradshaw, J. (eds.) Intelligent Agent Technology Research and Development: Proceedings of IAT 2001, Maebashi, Japan, October 23-26, pp. 28–39. World Scientific, Singapore (2001)
Skowron, A.: Approximation spaces in rough neurocomputing. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing, pp. 13–22. Springer, Heidelberg (2003)
Skowron, A., Stepaniuk, J.: Information granule decomposition. Fundamenta Informaticae 47(3-4), 337–350 (2001)
Skowron, A., Szczuka, M.: Approximate reasoning schemes: Classifiers for computing with words. In: Proceedings of SMPS 2002. Advances in Soft Computing, Heidelberg, Canada, pp. 338–345. Springer, Heidelberg (2002)
Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)
Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22, 73–84 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bazan, J.G., Nguyen, S.H., Nguyen, H.S., Skowron, A. (2004). Rough Set Methods in Approximation of Hierarchical Concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-25929-9_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22117-3
Online ISBN: 978-3-540-25929-9
eBook Packages: Springer Book Archive