Skip to main content

Rough Set Methods in Approximation of Hierarchical Concepts

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3066))

Included in the following conference series:

Abstract

Many learning methods ignore domain knowledge in synthesis of concept approximation. We propose to use hierarchical schemes for learning approximations of complex concepts from experimental data using inference diagrams based on domain knowledge. Our solution is based on the rough set and rough mereological approaches. The effectiveness of the proposed approach is performed and evaluated on artificial data sets generated by a traffic road simulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barwise, J., Seligman, J. (eds.): Information Flow: The Logic of Distributed Systems. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  2. Bazan, J.G.: A comparison of dynamic and non-dynamic rough set methods for extracting laws from decision tables. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications, pp. 321–365. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

  3. Bazan, J., Nguyen, H.S., Skowron, A., Szczuka, M.: A view on rough set concept approximation. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 181–188. Springer, Heidelberg (2003)

    Google Scholar 

  4. Bazan, J.G., Szczuka, M.: RSES and RSESlib - a collection of tools for rough set computations. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC 2000. LNCS (LNAI), vol. 2005, pp. 106–113. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Kloesgen, W., Żytkow, J. (eds.): Handbook of Knowledge Discovery and Data Mining. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  6. Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: a tutorial. In: Pal, S.K., Skowron, A. (eds.) Rough Fuzzy Hybridization: A New Trend in Decision-Making, pp. 3–98. Springer, Singapore (1999)

    Google Scholar 

  7. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1998)

    Google Scholar 

  8. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neural Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)

    Google Scholar 

  9. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  10. Pawlak, Z., Skowron, A.: A rough set approach for decision rules generation. In: Thirteenth International Joint Conference on Artificial Intelligence IJCAI, Chambéry, France, pp. 114–119. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  11. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Notices of the AMS 50, 537–544 (2003)

    MATH  MathSciNet  Google Scholar 

  12. Polkowski, L., Skowron, A.: Rough mereology: A new paradigm for approximate reasoning. International Journal of Approximate Reasoning 15, 333–365 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Skowron, A.: Approximate reasoning by agents in distributed environments. In: Zhong, N., Liu, J., Ohsuga, S., Bradshaw, J. (eds.) Intelligent Agent Technology Research and Development: Proceedings of IAT 2001, Maebashi, Japan, October 23-26, pp. 28–39. World Scientific, Singapore (2001)

    Chapter  Google Scholar 

  14. Skowron, A.: Approximation spaces in rough neurocomputing. In: Inuiguchi, M., Tsumoto, S., Hirano, S. (eds.) Rough Set Theory and Granular Computing, pp. 13–22. Springer, Heidelberg (2003)

    Google Scholar 

  15. Skowron, A., Stepaniuk, J.: Information granule decomposition. Fundamenta Informaticae 47(3-4), 337–350 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Skowron, A., Szczuka, M.: Approximate reasoning schemes: Classifiers for computing with words. In: Proceedings of SMPS 2002. Advances in Soft Computing, Heidelberg, Canada, pp. 338–345. Springer, Heidelberg (2002)

    Google Scholar 

  17. Stone, P.: Layered Learning in Multi-Agent Systems: A Winning Approach to Robotic Soccer. The MIT Press, Cambridge (2000)

    Google Scholar 

  18. Zadeh, L.A.: A new direction in AI: Toward a computational theory of perceptions. AI Magazine 22, 73–84 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bazan, J.G., Nguyen, S.H., Nguyen, H.S., Skowron, A. (2004). Rough Set Methods in Approximation of Hierarchical Concepts. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics