Skip to main content

Using Rough Set Theory for Detecting the Interaction Terms in a Generalized Logit Model

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Abstract

Although logit model has been a popular statistical tool for classification problems it is hard to determine interaction terms in the logit model because of the NP-hard problem in searching all sample space. In this paper, we provide another viewpoint to consider interaction effects based on information granulation. We reduce the sample space of interaction effects using decision rules in rough set theory, and then use the procedure of stepwise selection method is used to select the significant interaction effects. Based on our results, the interaction terms are significant and the logit model with interaction terms performs better than other two models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Press, S.J., Wilson, S.: Choosing between Logistic Regression and Discriminant Analysis. J am. Stat. Assoc. 73, 699–705 (1978)

    Article  MATH  Google Scholar 

  2. Aldrich, J.H., Nelson, F.D.: Linear Probability, Logit, and Probit Models. Sage, CA (1984)

    Google Scholar 

  3. DeMaris, A.: Logit Modeling. Sage, CA (1992)

    Google Scholar 

  4. Knoke, D., Burke, P.J.: Log-linear Models. Sage, CA (1980)

    MATH  Google Scholar 

  5. Liao, T.F.: Interpreting Probability Model: Logit, Probit, and Other Generalized Linear Models. Sage, CA (1994)

    Google Scholar 

  6. McCullagh, P.: Regression Model for Ordinal Data. J. Roy. Stat. Soc. A Sta. 42, 109–142 (1980)

    MATH  MathSciNet  Google Scholar 

  7. Zarembka, P. (ed.): Frontiers in Econometrics. Conditional Logit Analysis of Qualitative Choice Behavior. Academic Press, New York (1974)

    Google Scholar 

  8. Manski, C.F., McFadden, D. (eds.): Structural Analysis of Discrete Data with Econometric Applications. Econometric Models of Probabilistic Choice. MIT Press, MA (1981)

    Google Scholar 

  9. Hildebrand, W. (ed.): Advances in Econometrics. Qualitative Response Models. Cambridge University Press, Cambridge (1982)

    Google Scholar 

  10. McFadden, D.: Econometric Analysis of Qualitative Response Models. In: Griliches, Z., Intriligator, M.D. (eds.) Handbook of Econometrics, vol. II, pp. 1395–1457. North-Holland, Amsterdam (1984)

    Google Scholar 

  11. Menard, S.: Applied Logistic Regression Analysis, 2nd edn. Sage, CA (2001)

    Google Scholar 

  12. Jaccard, J.: Interaction Effects in Logistic Regression. Sage, CA (2001)

    MATH  Google Scholar 

  13. Argesti, A., Finlay, B.: Statistical Methods for the Social Science, 3rd edn. Prentice-Hall, NJ (1997)

    Google Scholar 

  14. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New York (1989)

    Google Scholar 

  15. Wofford, S., Elliott, D.S., Menard, S.: Continuities in Marital Violence. Journal of Family Violence 9, 195–225 (1994)

    Article  Google Scholar 

  16. Gupta, M., Ragade, R., Yager, R. (eds.): Advances in Fuzzy Set Theory and Applications. Fuzzy Sets and Information Granularity. North-Holland, Amsterdam (1979)

    Google Scholar 

  17. Zhong, N., Skowron, A., Ohsuga, S. (eds.): New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. Calculi of Granules Based on Rough Set Theory: Approximate Distributed Synthesis and Granular Semantics for Computing with Words. Springer, Heidelberg (1999)

    Google Scholar 

  18. Peter, J.F., Pawlak, Z., Skowron, A.: A Rough Set Approach to Measuring Information Granules. In: Proceedings of the 26th Annual International Computer Software and Application Conference, pp. 1135–1139 (2002)

    Google Scholar 

  19. Pawlak, Z.: Granularity of Knowledge, Indiscernibility and Rough Set. IEEE International Conference on Fuzzy Systems, 106–110 (1998)

    Google Scholar 

  20. Pawlak, Z.: Rough Set. Int. J. Comput. Inf. Sci., 341–356 (1982)

    Google Scholar 

  21. Greco, S., Matarazzo, B., Slowinski, R.: Rough Sets Theory for Multicriteria Decesion Analysis. Eur. J. Oper. Res. 129, 1–47 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Pawlak, Z., Slowinski, R.: Rough Set Approach to Multi-Attribute Decision Analysis. Eur. J. Oper. Res. 72, 1–47 (2001)

    Google Scholar 

  23. Beynon, M.: Reducts Within the Variable Precision Rough Sets Model: A Further Investigation. Eur. J. Oper. Res. 134, 592–605 (2001)

    Article  MATH  Google Scholar 

  24. Pawlak, Z.: Rough Set Approach to Knowledge-Based Decision Support. Eur. J. Oper. Res. 99, 48–57 (1997)

    Article  MATH  Google Scholar 

  25. Grzymala-Busse, J.W.: Knowledge Acquisition under Uncertainty- A Rough Set Approach. J. Intell. Robot. Syst. 1, 3–16 (1988)

    Article  MathSciNet  Google Scholar 

  26. Pal, S.K., Skowron, A. (eds.): Rough Fuzzy Hybridization: A New Trend in Decision Making. Rough Sets: A Tutorial, Singapore, pp. 1–98 (1999)

    Google Scholar 

  27. Slowinski, R. (ed.): Intelligent Decision Support- Handbook of Applications and Advances of the Rough Sets Theory. The Discernibility Matrices and Function in Information Systems, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  28. Wang, P.P. (ed.): Preceedings of the International Workshop on Rough Sets Soft Computing at Second Annual Joint Conference on Information Sciences. Finding Minimal Reducts Using Genetic Algorithms, Wrightsville Beach, NC, pp. 186–189 (1995)

    Google Scholar 

  29. Polkowski, L., Skowron, A.: Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems. Genetic Algorithm in Decomposition and Classification Problems, pp. 472–492. Physica-Verlag, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ong, CS., Huang, JJ., Tzeng, GH. (2004). Using Rough Set Theory for Detecting the Interaction Terms in a Generalized Logit Model. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics