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Abstract. In many applications, objects are reconstructed from cross-sections
for visualization, finite element and dynamic analysis. Although cross-section
of an object may contain multiple contours, a few papers have dealt with
branching problem. Moreover ends of branches are described flatly. In this
paper, as a basic study for dynamic analysis of a human knee joint, we present a
new modeling method which proposes a data-set for solving branching problem
and handling convex-end-condition of branches. We select an initial standard
point from lowest slice and decide a nearest standard point of the next slice and
the next, in turns. Based on standard points, we complete the data-set by
applying contour alignment. For 3D reconstruction, the surface is approximated
by bicubic non-uniform B-spline surface fitting. This method provides the
smooth surface model with C2 continuity and describes the convexity of ends of
branches.

1   Introduction

In many applications, objects are often reconstructed from 2D cross-sections for
visualization of 3D structure, finite element and multibody dynamic analysis. For 3D
reconstruction, several methods have been proposed, ranging from polyhedron-based
approaches[1, 3, 4, 5], intensively studied during the past decade, to tiling
algorithms[1, 3, 4, 5], skinning methods[6, 7, 8] and surface fittings[2, 9, 10, 13].
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Fig. 1. Definition of double branching problem

In general, each cross-section may contain multiple contours. Some studies have
nevertheless proposed branching algorithms to link one or more contours in one
cross-section to multiple contours in an adjacent cross-section with triangular
facets[1, 4, 5]. And only a few papers have approximated a set of 2D contours with
branching problems. Park and Kim[10] proposed a method for B-spline surface
approximation to a set of contour with branching problem but triangular facets were
constructed over each branching region and built triangular surface patches over these
facets. Jeong et al[2] proposed B-spline surface approximation to cross-sections using
distance maps. This method provided a smooth surface model, yet realized efficient
data reduction and described ends of branches as a flat surface by using the end
tangent condition[2, 11]. However this flat surface affects seriously force recovery if
this model is applied to dynamic analysis of the joint, because contact points
occurring at the joint are usually placed on the flat surface.

In this paper, we present a new modeling method for objects with branching
problems which uses a data-set for solving branching problem and handling convex-
end-condition of branches simultaneously. For 3D reconstruction, the surface is
approximated by tensor product non-uniform B-spline surface fitting. This method
provides bicubic non-uniform B-spline surface with C2 continuity and describes the
convexity of ends of branches.

2   Surface Fitting

If an object has complex shape, double branching situation occurs frequently[5]. So in
this paper, we consider objects with double branching. Double branching is a case in
which a contour 1+k

rC  at level zk+1 must be linked to two contours, k
iC  and k

jC , at its

lower level zk shown in the Fig. 1. Here, data points have a set of heights z0< z1<...<
zk<...< zmax and points of the kth contour are saved counterclockwisely.

The proposed method consists of three main phases, data-set, contour alignment,
surface fitting. First, we briefly review definitions of B-spline curve and surface
fitting. A detailed discussion of B-spline theory can be found in the literature[11].

2.1   Non-uniform B-Spline Curve Fitting

As a foundation for the surface fitting algorithm, we first apply open non-uniform B-
spline curve fitting to contours. Here, a cubic B-spline is employed as the basis
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function (p=3) and satisfies Q0=C(0) and Qm=C(1). In order to fit the open B-spline
curve to given m+1 contour points Qk, we use the least squares formulation below to
find control points Pi which is unknown as n+1 and assume n ≥ p.
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is a minimum with respect to n+1 variables, Pi. f  is a scalar-valued function of n-1

variables, P1,…, Pn-1. To minimize f , we set derivatives of f  with respect to n-1
points, Pl, equal to zero. Finally one linear equation remains below and we can
calculate control points P1,…, Pn-1.

RPNN T =)( (2)
The ku  and U affect the shape and parameterization. The ku  is the parameter

value precomputed by the chord length method[11] which is most widely used and
generally adequate.

The placement of knots should reflect the distribution of the ku . We need a total of

n+p+2 knots and there are n-p internal knots, and n-p+1 internal knot spans. Let
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then define internal knots by
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This guarantees that every knot span contains at least one ku , and under this

condition the matrix ( NNT ) is positive definite and well-conditioned. It can by solved
by Gaussian elimination without pivoting.

2.2   Tensor Product Non-uniform B-Spline Surface Fitting

The final step is to generate a bicubic open non-uniform B-spline surface and the
resulting B-spline surface is expressed as

∑∑
= =

=
n

i

m

j
jiqjpi PvNuNvuS

0 0
,,, )()(),( (5)

where P and S have x, y and z components. The control points Pi,j are (n+1) by (m+1)
network in u and v directions and we also calculate these by least squares method
defined by
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Again, the first order of business is to compute reasonable values for the ),( lk vu

and knot vectors U and V. A common method like the curve fitting is used to compute
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Fig. 2. Initial standard point (surrounded by small circle), (a) rectangle-based object(RBO), (b)
circle-based object(CBO) and (c) femur

parameters lu0 ,…, l
ru  for each l, and then each ku  is obtained by averaging across all

l
ku , l = 0,…,s, and lv  is also calculated. Once ),( lk vu  are computed, knot vectors U

and V can be obtained like the method at Sect. 2.1.

2.3   Branching Problem and Convex-End-Condition Handling; Data-Set

It is simple to construct a data-set for reconstructing a geometric model of an object
with double branching problem. The number of points of left and right branch
extracted from branches must be same and the number of row and column of points at
one side (left side in this paper) of branches are followed;

Number of row at one side of branch = )1(2 −×+ nx , (7)

Number of column at one side of branch = )2(2 n×× (8)

where x and n(=1, 2, …) mean a quarter of the total number of points of slice at the z0

and the slice number, respectively. And the total number of points demanded at the
first base and the number of row and column of points at the base are followed;

Total number of points at the first base

= 4)24(2}2)1(2{2 1max1max −×+××+×+−×+× mnmnx , (9)

Number of row at the base = mnx ×+−×+ 2)1(2 max , (10)

Number of column at the base = mn ×+× 24 max (11)

where nmax is the number of slice(=k+1) at the zk, m1(=1)and m(=1, 2, …) mean the
slice at the zk+1 and the number of slice counted only at the base, respectively. Thus
the size of data-set is ( mnx ×+−×+ 2)1(2 max , mn ×+× 24 max ). Here each value of

column includes three components, x, y and z.

For constructing the data-set, we select an initial standard point from a slice at the
z0. As shown in Fig. 2, it is efficient to select a maximum(or minimum) point placed
at the perpendicular direction to the line passing through approximate centers of two
branches at the left branch or a nearby point of a mentioned point. Based on this
point, the others are rearranged counterclockwisely. Points from branches and bases
are located at the left and right side inside of a data-set and outside of a data-set to
surround points from branches, respectively

(a) (b) (c)
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2.4   Contour Alignment

As the control net of a B-spline surface is composed of a set of control polygons, a
number of different control nets can be defined by variously aligning the given
control polygons. A different alignment of control polygons gives rise to a different
control net and results in the different shape of the surface. Since points of u- and v-
direction pass through different slices, neighboring points have to be arrayed as
closely as possible. After an initial standard point is selected by Sect. 2.3 we select a
shortest one of the next slice. Then this point becomes a standard point of the next
slice. Like this way, standard points are selected from all of slices. Standard points are
located at the closest place from a previous standard point, just above. By the contour
alignment, we can prevent unwanted twists or wiggles.

2.5   Approximation to within a Specified Accuracy

The bicubic B-spline surface can be obtained by (5) and the sum-of-squares error can
be calculated by comparing surface points at assigned data parameter values to
original data points[12], as shown by
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The average error in the surface fit is given by
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To obtain the approximating data to within some specified error bound, E, we use
iterative method which have three steps:

1. Starting with (p+1, q+1) control point (the minimum) and fit a surface.
2. Checking if the surface deviation is less than E. A record is maintained

for each knot span, indicating whether or not it has converged.
3. If the surface deviation does not satisfy E, a knot is added at the mid

point of each nonconvergent span, thus adding control points. And if the
deviation is less than E, stopping the reiteration.

3   Experimental Results

The proposed data-set has been applied to three different sets of contour data. We use
the synthetic data of rectangle-based object(RBO) and circle-based object(CBO) to
verify the method and the CT data of inferior region of a femur as a general case with
double branching problem.

The information of two synthetic data and CT data is denoted in Table 1 and their
cross-sections are shown in Fig. 3. In Table 1, the size of data-set, (row×column),
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means total number of points which have x, y, and z components. In Fig. 3, the
contour in each cross-section has been segmented and compressed into a closed
polygon. And small circles on a red line passing through contours are standard points
of each contour by contour alignment, starting at an initial standard point of lowest
slice.

Table 1. Information of two synthetic data and CT data of a femur

RBO CBO Femur

Number of
slices

14 14 18

Distance
between

neighboring
slices

0.5 0.2 0.125(mm)

Size of data-set 38×42 38×42 46×48

Fig. 3. Cross-sections of (a) RBO, (b) CBO and (c) femur

Fig. 4. B-spline surface of (a) RBO, (b) CBO and (c) femur

Table 2. Number of control points, total error and average error

RBO CBO Femur

Number of control points
(u direction, v direction)

(20, 21) (19, 21) (16, 19)

E(P) 827.0186 796.4465 88.2719

Eave(P) 1.9691 1.9961 0.2904

Figure 4 shows shaded surfaces. The resulting surface is approximated by bicubic
non-uniform B-spline surface. Table 2 presents the number of control points fitted in

(c)(b)(a)

(c)(b)(a)
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given accuracy, a total error and an average error occurring at data points with respect
to the surface. In the number of control points, (u direction, v direction), u direction
and v direction mean the number of points needed to approximate the vertical and
horizontal data of a data-set, respectively.

Fig. 5. Ends of branches, (a) RBO, (b) CBO and (c) femur

Figure 5 shows states of ends of branches and each example has double branches.
A straight red line means a lowest slice, n1, and z values are 0.5, 0.2 and 0.125 for (a)
RBO, (b) CBO and (c) femur, respectively. If there is just a previous slice of a lowest
slice, its z value is 0 for all examples. As shown in figure, ends of branches are
reconstructed convexly and its surface is smooth for all direction. We can also verify
lowest points for all ends of branches are within z value, 0.

4   Conclusions and Discussions

As a basic study for more advanced dynamic analysis of knee joint, we have
presented a new modeling method for objects with branching problem. For
constructing a data-set, we select an initial standard point and complete the data-set
based on standard points by applying contour alignment. For 3D reconstruction, the
surface is approximated by tensor product non-uniform B-spline surface fitting. This
method has provided a smooth bicubic B-spline surface model with C2 continuity, as
shown in Fig. 4.

In addition to a surface approximation, another important fact for surface fitting is
the error between data points and points on the surface. Control points are calculated
by least squares sense so that the surface is closer to the data. The more the number of
control points increases, the more approximation improves. However, as the number
of control points approaches the number of data points, noises or unwanted wiggles
can occur according to [11]. So the tolerance for an average error allowable was 2.0
for RBO and CBO and 0.3 for a femur which are determined empirically. As shown in
Table 2 and Fig. 4, average errors are satisfied with the given tolerance and resulting
surface models have no noises or unwanted wiggles.

Moreover, as shown in Fig. 5, ends of branches of all examples are convex and
within the distance between neighboring slices. Sun et al[13] used ‘doom’ feature in
SolidWorks to describe the terminal region convexly for finite element analysis or
multibody dynamic analysis of human middle ear. Thus convex-end-condition is very

(a)

(b)

(c)
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important and we think these results will play an important role in conducting more
advanced dynamic analysis of knee joint hereafter.

The number of points extracted from images is restricted within small number if
the resolution of images is low. This can be limitation but we can overcome this
problem by improvements in data acquisition and imaging techniques such as
computed tomography, magnetic resonance imaging and ultrasound imaging. Since
the location of points affects significantly to the shape of a model, the data-set must
not have sharp turn. When there are sharp turns, it need to use the centripetal method
for parameter values or rise the degree of B-spline, as described in the literature[11].

We concluded this new method provided C2 continuous bicubic B-spline surface
model of objects including branching problem and it described the convex surface,
required absolutely for dynamic analysis of joints, occurring at ends of branches
smoothly within distance between neighboring slices. In the future study, we have a
plan to execute more advanced dynamic analysis of a human knee joint.
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